FINAL REPORT

Walker Lake 2022 Baseline Water Quality Monitoring Program

Prepared for:

Walker Lake Landowners Association

Shohola Township Pike County PA

Prepared by:

Pond, Lake & Stream Management & SuppliesP.O. Box 605PhDoylestown, PA 18901ww

Ph: 215.230.9325 www.aqualinkinc.com

TABLE OF CONTENTS

Section No.

Page

1.	INT	RODUCTION	1
2.	LAF	XE MANAGEMENT & REVIEW OF PAST DATA	3
	2.1. 2.2.	LAKE WATER QUALITY MONITORING PROGRAM FIELD OBSERVATIONS & LAKE TREATMENTS	3
3.	PRI	MER ON LAKE ECOLOGY AND WATERSHED DYNAMICS	6
4.	WA	TER QUALITY DATA RESULTS	9
2	4.1.	WATER TEMPERATURE AND DISSOLVED OXYGEN	9
2	4.2.	PHOSPHORUS	
2	4.3.	NITROGEN	
Z	1.4.	SECCHI TRANSPARENCY	
2	4.5.	CHLOROPHYLL-A	. 15
4	1.6.	PHYTOPLANKTON & ZOOPLANKTON BIOMASS	. 16
	4.6.1		17
	4.6.2	2. Zooplankton	19
2	4.7.	CARLSON'S TROPHIC STATE INDEX VALUES	. 22
5.	CON	NCLUSIONS AND RECOMMENDATIONS	. 24
6.	LIT	ERATURE CITED	. 30

Appendices

- Appendix A Glossary of Lake and Watershed Management Terms
- Appendix B Lake Water Quality Data for 2022

Cover Page Photograph

The photograph was taken during a monitoring event in August of 2022.

List of Tables

Table No.

Table 4.1	Phosphorus & Suspended Solids Concentrations at Station WL2	13
Table 4.2	Mean Nitrogen Concentrations at WL2 in 2022	14
Table 4.3	Mean Carlson's TSI Values at Station WL2 in 2022	22

List of Figures

Figure No.

Figure 1.1	Walker Lake & Locations of Lake Monitoring Stations 1
Figure 3.1	Aquatic Food Chain7
Figure 4.1	2022 Temperature Profiles in Walker Lake at Station WL210
Figure 4.2	2022 Dissolved Oxygen Profiles in Walker Lake at Station WL2 10
Figure 4.3	Total Phosphorus Concentrations in Walker Lake (2016-2022) 12
Figure 4.4	Dissolved Reactive Phosphorus Concentrations in Walker Lake (2016-2022) 12
Figure 4.5	Total Nitrogen Concentrations in Walker Lake (2016-2022) 14
Figure 4.6	Secchi Disk Transparency in Walker Lake (2016-2022) 16
Figure 4.7	Chlorophyll-a Concentrations in Walker Lake (2016-2022)17
Figure 4.8	Phytoplankton Biomass in Walker Lake in 2022
Figure 4.9	Mean Phytoplankton vs. Cyanobacteria Biomass in Walker Lake (2016-2022) 20
Figure 4.10	Zooplankton Biomass in Walker Lake in 2022
Figure 4.11	Mean Zooplankton Biomass in Walker Lake (2016-2022)
Figure 4.12	Carlson's TSI Values for Station WL2 (2016-2022)
	1577-31 Walker Lake WQ Report 2022

Page

Page

1. Introduction

Walker Lake, which is 110 acres in surface area, is located off Twin Lakes Road in Shohola Township, Pennsylvania as shown in Figure 1.1. Walker Lake is owned and maintained by the Walker Lake Landowners Association (hereinafter referred to as the Association). The lake flows in a southwest to northeast direction. At the northeastern end, there are two individual coves. The northwestern cove is the location of the dam and its spillway and the community boat launch. The northeastern cove contains an island which is centrally located. Walker Lake is considered slightly shallow with an average depth of approximately 2.2 meters (7.3 feet) and a maximum depth of approximately 6.6 meters (21.5 feet). The deepest section of the lake is located in the southeastern basin at Station WL2. A more thorough discussion of lake bathymetry can be found in *Walker Lake Bathymetric Lake Mapping 2021 Final Report* (Aqua Link 2022).

Historically, low to moderate levels of planktonic algae (algal blooms) and mats of filamentous algae have been treated with copper sulfate (aquatic pesticide or algaecide) during the growing season, as needed. Submerged aquatic vegetation and floating leaved aquatic vegetation treatments have been applied to the lake on an as needed basis as determined by the Association. Nuisance aquatic plants have been controlled both mechanically (hand pulling or cutting by hand) by lakeside property owners and the use of aquatic pesticides (herbicides).

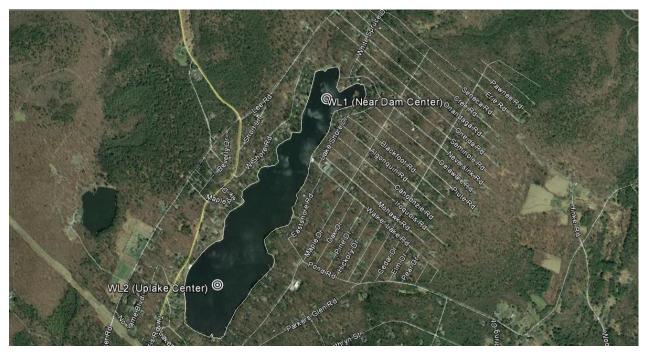


Figure 1.1 Walker Lake & Locations of Lake Monitoring Stations

Prepared by Aqua Link, Inc.

In the past, the Association retained Ecological Solutions to monitor the water quality of the lake, assess the lake's fishery, and control nuisance levels of algae and aquatic plants using aquatic pesticides. In 2016, the Association retained Aqua Link to handle its lake management needs. Our first priority was to overhaul the lake water quality monitoring program. The primary goal of the overhauled lake water quality monitoring program was to now begin collecting high quality water quality data for key lake parameters which relate to the overall ecological health of the lake and the natural process of lake aging (known as eutrophication). In 2016, the Association also hired Aqua Link to control some nuisance stands of floating leaved aquatic plants (namely water lily and water shield) and to reassess the lake's fishery.

In 2022, the Association retained Aqua Link to continue monitoring the water quality of Walker Lake. Lake water quality data for 2022 were analyzed and compared to the historical lake data from 2016 to 2021 (annual lake reports prepared by Aqua Link, 2017-22). The comparison of water quality data over time is referred to water quality trend analysis and allows lake managers the ability to assess whether lake water quality has improved or degraded over time and to determine the overall success and effectiveness of any implemented lake or watershed best management practices.

As in the past (2016 to 2021), Aqua Link continued controlling nuisance aquatic vegetation in Walker Lake and along its dam in 2022. Aquatic pesticides were applied to the lake on two different occasions to control some nuisance submerged plant species, primarily variable leaf milfoil and bladderwort. The 2022 treatment program was similar to 2021 and but considered more aggressive with respect to targeting variable leaf milfoil. In addition, emergent vegetation in areas within close proximity to the dam was treated twice in 2022.

Additional work performed by Aqua Link included an aquatic plant survey of the lake in 2022, which is discussed in detail in a separate report. Aqua Link also conducted an electrofishing fisheries survey in 2022 to further assess the lake's fish population and structure. The analysis of this fishery study is also discussed in a separate report. In addition, a bathymetric survey was performed by Aqua Link in 2021.

2. Lake Management & Review of Past Data

2.1. Lake Water Quality Monitoring Program

In 2022, Aqua Link continued to monitor the water quality in Walker Lake as part of the baseline monitoring program. Two lake monitoring stations (WL1 and WL2) were monitored three times during the months of June through August. Stations WL1 and WL2 are located near the dam (northern basin) and up lake (southern basin), respectively (Figure 1.1). Station WL2 is the primary monitoring station that will be used in greater detail for trend analysis as well as more thorough comparisons from this point forward. All 2022 water quality data collected for both WL1 and WL2 can be reviewed in Appendix B.

On each study date, *in-situ* water quality data were measured and recorded by Aqua Link. *In-situ* water quality data (pH, dissolved oxygen, temperature, conductivity, specific conductivity, and oxidation reduction potential) were measured and recorded simultaneously using an YSI Model 600XL Sonde and a YSI 600D data logger. *In-situ* data were collected at 0.5-to-1.0-meter intervals throughout the water column at both Stations WL1 and WL2. Secchi disk transparency was measured and recorded at both stations using a standard freshwater Secchi disk.

In addition to *in-situ* data, Aqua Link collected lake water samples on each study date at Station WL2 (Figure 1.1) using a Kemmerer water sampler. Collected water samples were subsequently shipped to the contract laboratory for further analysis. At Station WL2, surface water samples were collected and analyzed for alkalinity, hardness, total suspended solids, phosphorus (total and dissolved reactive), chlorophyll-a, nitrate nitrogen, nitrite nitrogen, total Kjeldahl nitrogen, and ammonia nitrogen. Total nitrogen was calculated from this data as well as the TN to TP ratios to determine the limiting nutrient in your lake. Additional surface samples were collected on each study date at this station for the identification and enumeration of phytoplankton from June through August. Zooplankton samples were also collected from June through August at Station WL2. Zooplankton samples were obtained for later laboratory analysis (identification and enumeration) by using an 80 um (micron) mesh plankton net (6 inch diameter), which was towed vertically, at minimum, a total distance of 30 meters throughout the entire lake water column (bottom to surface).

In addition, for the first time in 2022, Station WL2, bottom samples were collected during the August sampling date using a Kemmerer water sampler. These bottom water samples were collected and analyzed by the contract laboratory for phosphorus (total and dissolved reactive) and total suspended solids.

2.2. Field Observations & Lake Treatments

The water clarity of the lake was considered fair and relatively consistent from June through August. Therefore, the Association did not request any algae treatments during the entire year. In June 2022, several low to moderate density stands of bladderwort (*Utricularia spp.*) were observed still rooted, below the surface, throughout much of the eastern shoreline areas, mostly favoring the northern end of the lake. As a result of a moderately aggressive treatment performed on June 1st, 2022, a significant reduction in bladderwort was observed in July during the water quality monitoring. However, some of the previously treated areas still had some problematic levels of bladderwort. As a result, a follow-up treatment was performed on July 12th, 2022, as observed by Aqua Link. The population of bladderwort has remained a maintenance issue since 2017 in Walker Lake. Therefore, it is expected that the population will need further treatments in future years. Bladderwort is native to the region, but often becomes problematic locally.

Another submerged plant of much concern was the noxious and invasive plant, variable leaf milfoil (*Myriophyllum heterophyllum*) which was observed for the first time exclusively in a small isolated patch located along the southern shoreline in early June of 2020. This small patch was observed and successfully treated the day of observation by using a combination of herbicides. Since this time, this plant has spread throughout much of the perimeter of the lake as well as many areas in the middle of the lake with limited depth. Due to the ability of this plant to spread quickly and grow rapidly, variable leaf milfoil will likely continue to spread. Variable leaf milfoil was treated on June 1st, 2022 and July 12th, 2022 when the bladderwort treatments were performed. Similar to the bladderwort treatments, the milfoil treatments were deemed to be highly successful.

During the fall when the electrofishing survey was performed by Aqua Link, the milfoil populations appeared to remain under control. However, this invasive plant will unfortunately return in subsequent years due to the plant's heartiness. Therefore, it is important to remain vigilant to monitor and chemically treat this species if found to keep the plant manageable or possibly eradicate entirely in Walker Lake. It is unknown how the plant entered the lake, but it likely entered by waterfowl or possibly a boat or trailer with the plant attached. This plant is found in lakes nearby and is becoming an increasing threat locally. Variable leaf milfoil can become problematic and grow densely all the way to the surface in shallow to moderately shallow areas if left unchecked, potentially reducing value of the lake for boating, fishing, swimming, and general aesthetics. Furthermore, this plant has the ability to grow in a dense monoculture thereby reducing biodiversity and overall health of the lake ecosystem.

Walker Lake 2022 Baseline Water Quality Monitoring Program Walker Lake Landowners Association

A formerly observed plant species called baby tears is not native this far north in the United States. This plant has the potential to become problematic, but it is not observed frequently in this part of the country. This non-native plant may have been introduced to the lake by a local resident with an aquarium or transported to Walker Lake from another lake via boat trailers or waterfowl. Baby tears is a plant used in the aquarium industry and should be monitored closely to track any potential spreading in the future. This plant was only observed once during a lake monitoring event in 2016, but monitoring should continue to prevent potential spread of this species. If density or abundance of baby tears increases in 2023, then chemical treatment for this plant is recommended to prevent any further spreading.

Another submerged plant observed during Aqua Link's macrophyte surveys from 2017 - 2022 at relatively low abundance was a low growing plant called springtape (*Sagittaria kurziana*). This is another plant that is non-native and was likely introduced from the aquarium industry. For the past four years, springtape was not considered problematic, but should continue to be monitored and treated if the plant becomes problematic.

A more recently observed submerged plant discovered in 2019 was giant hairgrass (*Eleocharis montevidensis*), which was found at just one sampling location in low density during Aqua Link's 2019 macrophyte survey. In 2022 this plant was again observed at low to moderate density at thirteen different locations during the macrophyte survey. This plant is native to North America and currently does not restrict any recreation uses in Walker Lake. In fact, this plant can potentially serve as habitat for fish and other aquatic organisms, making it beneficial.

As mentioned previously, Walker Lake was treated two times on June 1st and July 12th in 2022, for submerged vegetation, focusing on bladderwort and variable leaf milfoil. On July 12th and October 10th treatments were also performed for emergent aquatic and floating leaved vegetation on and along the dam area vicinity. No floating leaved plants such as lilies or watershield were targeted elsewhere in Walker Lake during 2022. The general goal of all treatments was to improve the aesthetics and accessibility to the lake from areas with densely populated stands of submerged, floating leaved, and emergent aquatic vegetation. A further goal regarding variable leaf milfoil is eradication for this species is desirable. The scale of floating leaved and emergent aquatic plant treatments should remain the same in 2023 to achieve the desired level of control. A more aggressive approach is recommended primarily for variable leaf milfoil, with continued similar bladderwort control. As mentioned previously, variable leaf milfoil is a plant species that can populate and become problematic very quickly. Therefore, it is important to remain vigilant when treating this plant.

3. Primer on Lake Ecology and Watershed Dynamics

A glossary of lake and watershed terms is provided in Appendix A (U.S. EPA 1980). This glossary is intended to serve as an aid to understanding this section and contains many of the technical terms used throughout the remainder of this report.

The water quality of a lake is often described as a reflection of its surrounding watershed. The term "lake" collectively refers to both reservoirs (man-made impoundments) and natural lake systems. Water from the surrounding watershed enters a lake as streamflow, surface runoff and groundwater. The water quality of these water sources is greatly influenced by the characteristics of the watershed such as, geology, soils, topography and land use. Of these characteristics, changes in land use (e.g., forested, agriculture, silviculture, residential, commercial, industrial) can greatly alter the water quality of lakes.

Nutrients (e.g., phosphorus, nitrogen, carbon, silicon, calcium, potassium, magnesium, sulfur, sodium, chloride, iron) are primarily transported to lakes via streamflow, surface runoff and groundwater while sediments are mainly conveyed as streamflow and surface runoff. As streamflow and surface runoff enter a lake, their overall velocity decreases, which allows transported sediments to settle to the lake bottom. Many of these incoming nutrients may be bound to sediment particles and subsequently will also settle to the lake bottom. Very small sediment particles, such as clays, may resist sedimentation and subsequently pass through the lake without settling.

Once within the lake, water quality is further modified through a complex set of physical, chemical, and biological processes. These processes are significantly affected by the lake's morphological characteristics (morphology). Some of the more important morphological characteristics of lakes are size, shape, depth, volume, and bottom composition. In addition, the hydraulic residence time (i.e., the lake's flushing rate) also greatly affects these processes and is directly related to the lake's volume and the annual volume of water flowing into the lake.

With respect to nutrients, phosphorus and nitrogen are generally considered the most important nutrients in freshwater lakes. Phosphorus and, to a lesser degree, nitrogen typically determines the overall number of aquatic plants present. Aquatic plants adsorb and convert available nutrients into energy, which is then used for additional growth and reproduction. In lakes, aquatic plants are mainly comprised of phytoplankton (free-floating microscopic plants or algae) and macrophytes (higher vascular plants). The most readily available form of phosphorus is dissolved orthophosphate (analytical determined as dissolved reactive phosphorus), while ammonia (NH_3 -N) and nitrate (NO_3 -N) are the most readily available forms of nitrogen.

Walker Lake 2022 Baseline Water Quality Monitoring Program Walker Lake Landowners Association

The transfer and flow of energy in lakes is ultimately controlled by complex interactions between various groups of aquatic organisms (both plants and animals). The feeding interactions that exist between all aquatic organisms is called the food web. A simplistic diagram of a food chain for a lake is presented as Figure 3.1. As shown in this figure, algae (phytoplankton) and aquatic macrophytes capture energy from the sun and convert this energy into chemical energy through the process known as photosynthesis. During photosynthesis, carbon dioxide, nutrients, water, and captured sunlight energy are used to produce organic compounds (chemical energy), which are then used to support further growth and reproduction.

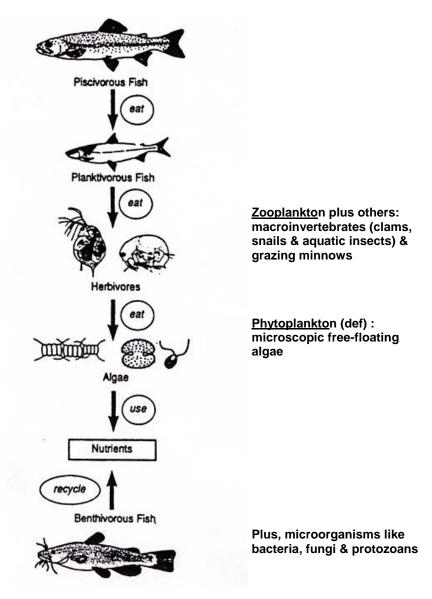


Figure 3.1 Aquatic Food Chain

Prepared by Aqua Link, Inc.

Walker Lake 2022 Baseline Water Quality Monitoring Program Walker Lake Landowners Association

Energy continues to flow upward through the food chain. Algae are primarily grazed upon by zooplankton. Zooplankton are tiny aquatic animals that are barely visible to the naked eye. Next, zooplankton serve as prey for planktivorous (plankton-eating) fish and larger invertebrates (macroinvertebrates), which then are consumed by larger piscivorous (fish-eating) fish. Overall, these aquatic organisms (zooplankton, macroinvertebrates and fish) derive energy by breaking down organic matter through the process known as respiration. During respiration, organic matter, water and dissolved oxygen are converted into carbon dioxide and nutrients.

At the bottom of the food chain (Figure 3.1), particulate organic waste products (excrement) from aquatic organisms along with dead aquatic organisms settle to the lake bottom and are subsequently feed upon by other organisms. Organisms that live or reside along the lake bottom are referred to as benthivores. After settling to the lake bottom, dead organic materials and organic waste products are now called detritus. Some benthivorous fish (catfish and carp) and microorganisms (bacteria, fungi and protozoans) feed upon detritus. Aquatic organisms that feed upon detritus in lakes are referred to as decomposers. Decomposers obtain energy by breaking down detritus (dead organic matter) via the process of respiration. During decomposition, some of the nutrients are recycled back into lake water and can now once again be used by algae and aquatic plants for growth and reproduction. Any unused detritus will accumulate and eventually become part of the lake sediments, thereby increasing the organic content of these sediments.

Ultimately, the amount of nutrients in lakes controls the overall degree of aquatic productivity (Figure 3.1). Lakes with low levels of nutrients and low levels of aquatic productivity are referred to as oligotrophic. Oligotrophic lakes are typically clear and deep with low quantities of phytoplankton and rooted aquatic plants. In these lakes, the deeper, colder waters are generally well-oxygenated and capable of supporting coldwater fish, such as trout. Conversely, lakes with high nutrient levels and high levels of aquatic productivity are referred to as eutrophic. Eutrophic lakes are generally more turbid and shallower due to the deposition of sediments and the accumulation of detritus. If deep enough, the bottom waters of eutrophic lakes are generally less oxygenated. Eutrophic lakes are often capable of supporting warmwater fish, such as bluegill and bass. Mesotrophic lakes lie somewhere in between oligotrophic and eutrophic lakes. These lakes contain moderate levels of nutrients and moderate levels of aquatic productivity. In some instances, the flow of energy through the food web may be disrupted. In hyper-eutrophic (highly eutrophic) lakes, aquatic productivity is extremely high and is dominated by very large numbers of a few, undesirable species. The phytoplankton community is typically comprised largely by blue-green algae during the summer months. Many species of blue-green algae are not readily grazed upon the zooplankton community. Under these conditions, the bluegreen algae community is allowed to flourish due to the lack of predation, while the zooplankton community collapses. Decreases in zooplankton biomass in a lake may in turn adversely affect the lake's fishery. In addition, shallow lake areas may be completely infested with dense stands of aquatic macrophytes and the fishery may be dominated by rough fish such as the common carp and catfish.

4. Water Quality Data Results

Aqua Link analyzed and evaluated the lake water quality data collected in 2022 and compared these data to the data collected during the *Walker Lake 2016 - 2021 Baseline Water Quality Monitoring Program* (Aqua Link 2017 - 2022). The comparison of recently acquired data to past data is commonly referred to as "water quality trend analysis", which provides a powerful tool in assessing lake water quality improvements or degradation over time. Water quality trend analysis becomes increasingly more powerful as more water quality data are added to the lake database annually. In this study, both *in-situ* and chemical water quality data are briefly discussed in terms of trends. Lake water quality data are presented as graphs and many of these graphs contain linear trend lines indicating whether water quality is improving or degrading.

As discussed in Section 2.1, lake water quality was monitored at Stations WL2 and WL1, which are the primary and secondary lake monitoring stations. The primary lake station (Station WL2) and the secondary lake station (Station WL1) are located up-lake (southern region of the lake) and near the dam (northern region of the lake), respectively (Figure 1.1). The maximum water depths at Stations WL2 and WL1 are typically 6.5 and 3 meters (9.8 and 21.3 feet), respectively. The methods for collecting and analyzing all lake water quality data for both monitoring stations are discussed in detail in Section 2.1 of this report.

The following subsections of this report will discuss in detail all of the lake data collected at the primary lake station - Station WL2. All 2022 *in-situ*, chemical, phytoplankton, and zooplankton data for both lake stations are included in Appendix B. This includes the calculated Carlson Trophic State Index (TSI) values for Secchi depth, chlorophyll-a, and total phosphorus for Station WL2. The 2016-2021 lake data can be found in the annual Walker Lake Baseline Water Quality Monitoring Program Final Reports from 2016-2021 (Aqua Link 2017 - 2022).

4.1. Water Temperature and Dissolved Oxygen

Water temperature and dissolved oxygen profile data at Station WL2 (deepest, up-lake, centrally located area in the southern region) in 2022 are presented in Figures 4.1 through 4.2. The maximum water depth at Station WL2 was 6.4 meters (20.8 feet) in 2022. The lake was strongly, thermally stratified during the months of June through August (Figure 4.1). The thermocline, which is the point where the temperature change is the greatest, divides the epilimnion (surface waters) and the hypolimnion (bottom waters), was located at a depth of approximately 2.0 to 4.5 meters (6.6 to 14.8 feet) during the study period. Figure 4.2 shows that dissolved oxygen levels rapidly decreased within deeper lake waters (hypolimnion).

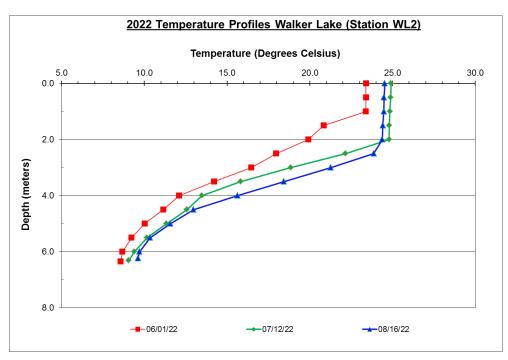


Figure 4.1 2022 Temperature Profiles in Walker Lake at Station WL2

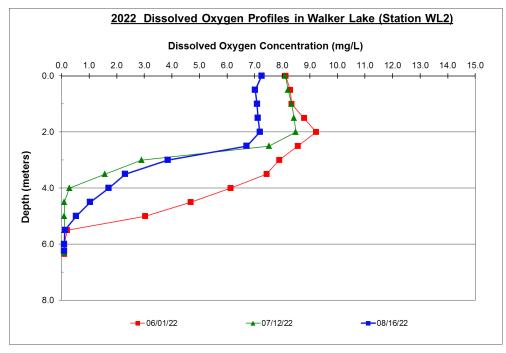


Figure 4.2 2022 Dissolved Oxygen Profiles in Walker Lake at Station WL2

Prepared by Aqua Link, Inc.

4.2. Phosphorus

Total phosphorus represents the sum of all forms of phosphorus. Total phosphorus includes dissolved and particulate organic phosphates (e.g., algae and other aquatic organisms), inorganic particulate phosphorus as soil particles and other solids, polyphosphates from detergents and dissolved orthophosphates. Soluble (or dissolved) orthophosphate (determined analytically as dissolved reactive phosphorus) is the phosphorus form that is most readily available for algal uptake. Soluble orthophosphate is usually reported as dissolved reactive phosphorus because laboratory analysis takes place under acid conditions and may result in the hydrolysis of some other phosphorus forms. Total phosphorus levels are strongly affected by the daily phosphorus loadings to a lake, while soluble orthophosphate levels are largely affected by algal consumption during the growing season. Based on criteria established by Nurnberg (2001), a lake is classified as oligotrophic, mesotrophic, eutrophic, and hypereutrophic when surface total phosphorus concentrations are less than 0.010 mg/l as P, 0.010 to 0.030 mg/l as P, 0.031 to 0.100 mg/l as P and greater than 0.100 mg/l as P, respectively.

The 2022 annual mean, (June through August), for total phosphorus was 0.017 mg/L and was 0.002 mg/L for dissolved reactive phosphorous concentrations in the surface water at WL2. In contrast, the 2021 values for total phosphorus and dissolved reactive phosphorous concentrations in the surface water at WL2 were 0.033 mg/L and a dissolved reactive phosphorous with the same value of 0.002 mg/L, respectively. A moderate decrease was observed for total phosphorous, while dissolved reactive phosphorus concentrations remained the same when compared with 2021. These levels of fluctuation for total phosphorous and dissolved reactive phosphorous and dissolved reactive phosphorous concentrations. Based upon the 2022 mean total phosphorus concentrations for surface waters, Walker Lake was classified as mesotrophic in 2022.

In terms of trends, surface total phosphorus and dissolved reactive phosphorus levels appear to be declining very slightly in Walker Lake. The total phosphorus values have been somewhat inconsistent, however. As more data are collected in future years, the accuracy in determining whether or not phosphorus levels are actually lowering in the lake will become clearer.

Total phosphorus and dissolved reactive phosphorus concentrations for bottom waters in August 2022 at Station WL2 are presented in Table 4.1. The purpose of collecting these samples was to determine if significant phosphorus loading was occurring in Walker Lake during the warmest part of the summer season. This was the first time Aqua Link collected bottom samples for these parameters. The dissolved reactive phosphorus concentration was 0.002 mg/L and the total phosphorus concentration was 0.020 mg/L (Table 4.1). Both values indicated that low levels of phosphorus loading were occurring at the time of sampling. Although low at the time of sampling, it is likely there are times when phosphorus may be released at higher levels.

Figure 4.3 Total Phosphorus Concentrations in Walker Lake (2016-2022)

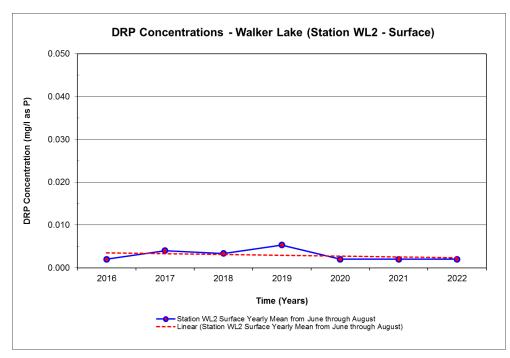


Figure 4.4 Dissolved Reactive Phosphorus Concentrations in Walker Lake (2016-2022)

Station	Total	Dissolved Reactive	Total Suspended
	Phosphorus*	Phosphorus*	Solids*
	(mg/L as P)	(mg/L as P)	(mg/L)
WL2 Bottom	0.020	< 0.002	< 2.0

 Table 4.1 Phosphorus & Suspended Solids Concentrations at Station WL2

Note: * denotes single sampling date in August 2022

4.3. Nitrogen

Nitrogen compounds are also important for the growth and reproduction of phytoplankton and aquatic macrophytes. The common inorganic forms of nitrogen in water are nitrate (NO₃⁻), nitrite (NO₂⁻) and ammonia (NH₃). In water, ammonia is present primarily as ammonium (NH₄⁺) and undissociated ammonium hydroxide (NH₄OH). Of these two forms, undissociated ammonium hydroxide is toxic and its toxicity increases as pH and water temperature increase. Overall, the most dominant form of inorganic nitrogen present in lakes depends largely on the dissolved oxygen concentrations. Nitrate is the form usually found in surface waters, while ammonia is only stable under anaerobic (low oxygen) conditions. Nitrite is an intermediate form of nitrogen, which is generally considered unstable. Nitrate and nitrite (referred to as total oxidized nitrogen) are often analyzed together and reported as NO₃ + NO₂-N, although nitrite concentrations are usually insignificant as noted previously. Total Kjeldahl nitrogen (TKN) concentrations include ammonia and organic nitrogen (both soluble and particulate forms). Organic nitrogen can be easily estimated by subtracting ammonia nitrogen from total Kjeldahl nitrogen fractions. Total nitrogen is calculated by summing the nitrate-nitrite, ammonia and organic nitrogen fractions together.

According to Nurnberg (2001), lakes with surface total nitrogen concentrations less than 0.350 mg/l as N are classified as oligotrophic, from 0.350 to 0.650 mg/l as N are classified as mesotrophic, from 0.651 to 1.200 mg/L are classified as eutrophic and greater than 1.200 mg/l as N are classified as hypereutrophic.

The 2022 mean total nitrogen, total Kjeldahl nitrogen (TKN), nitrate plus nitrite nitrogen, and ammonia nitrogen concentrations for surface waters are presented in Table 4.2. Total nitrogen concentrations increased from 0.247 mg/L in 2021 and 0.383 mg/L in 2022 (Figure 4.5). This observed increase in total nitrogen was considered a normal level of seasonal fluctuation, which are common for lakes.

Walker Lake 2022 Baseline Water Quality Monitoring Program Walker Lake Landowners Association

Table 4.2Mean Nitrogen Concentrations at WL2 in 2022								
Year	Total ar Nitrogen (mg/L as N)		Total Kjeldahl Nitrogen (mg/L as N)		Nitrate + Nitrite (mg/L as N)		Ammonia (mg/L as N)	
	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom
2022	0.383	n/a	0.327	n/a	0.056	n/a	0.020	n/a

Overall, the 2022 mean total nitrogen concentration for Walker Lake was found to be at a moderate level. Based upon the Nurnberg criteria (2001), the mean total nitrogen concentrations for surface waters thereby suggest that Walker Lake was classified as slightly mesotrophic in 2022.

Although total nitrogen has increased since 2020, the trend line suggests total nitrogen has been decreasing in Walker Lake since 2016. Similar to phosphorus levels, as more data are collected in subsequent years, this trend line will become more accurate.

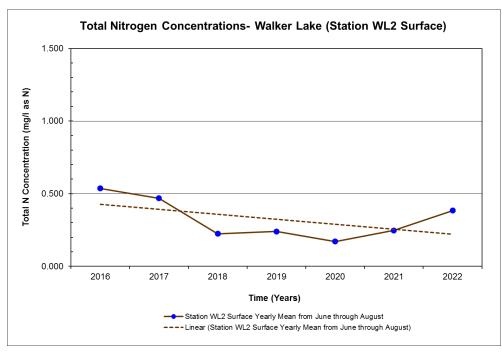


Figure 4.5 Total Nitrogen Concentrations in Walker Lake (2016-2022)

4.4. Secchi Transparency

The transparency, or clarity, of a lake is most often reported as the Secchi disk depth. This measurement is taken by lowering a circular black-and-white disk, which is 20 cm (8 inches) in diameter, into the water until it is no longer visible. Observed Secchi disk depths range from a few centimeters in very turbid lakes, to over 40 meters in the clearest known lakes (Wetzel, 1983). Although somewhat simplistic and subjective, this field monitoring method probably best represents those lake conditions that are most often perceived by lake users and the general public.

Secchi disk transparency is related to the transmission of light in water, and depends on both the absorption and scattering of light. The absorption of light in dark-colored waters reduces light transmission. Light scattering is usually a more important factor than absorption in determining Secchi depths. Scattering can be caused by water discoloration or by the presence of both particulate organic matter (e.g., algal cells) and inorganic materials (e.g., suspended clay particles). In general, a lake is classified as oligotrophic, mesotrophic, eutrophic and hypereutrophic when Secchi disk transparency values are greater than 4.0 meters, 4.0 to 2.0 meters, 1.9 to 1.0 meters, and less than 1.0 meter, respectively (Nurnberg 2001).

The annual mean Secchi disk transparency values in Walker Lake at Station WL2 from 2016 - 2022 are presented in Figure 4.6. Overall, the mean Secchi disk transparency increased slightly in 2022 when compared to 2021, but has been relatively consistent since 2016. The 2022 mean Secchi disk transparency value for Walker Lake at WL2 was 1.47 meters and values ranged from 1.13 to 1.86 meters for all study dates. Based upon Nurnberg (2001), the lake was classified as eutrophic in 2022.

In terms of trends, transparency values have been relatively consistent, but have declined slightly since 2016. As more data are collected in subsequent years, this trend line will become more accurate.

4.5. Chlorophyll-a

Chlorophyll-a is a pigment that gives all plants their green color. The function of chlorophyll-a is to convert sunlight to chemical energy in the process known as photosynthesis. Because chlorophyll-a constitutes about 1 to 2 percent of the dry weight of planktonic algae, the amount of chlorophyll-a in a water sample is an indicator of phytoplankton biomass. According to Nurnberg (2001), a lake is generally classified oligotrophic, mesotrophic, eutrophic, and hypereutrophic when chlorophyll-a concentrations are less than 3.5 ug/l, 3.5 to 9.0 ug/l, 9.1 to 25.0 ug/l, and greater than 25.0 ug/l (micrograms per liter), respectively.

Walker Lake 2022 Baseline Water Quality Monitoring Program Walker Lake Landowners Association

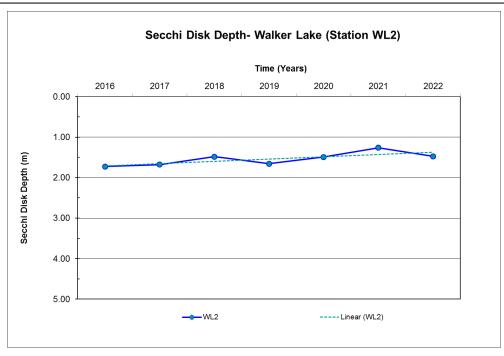


Figure 4.6 Secchi Disk Transparency in Walker Lake (2016-2022)

The annual mean chlorophyll-a concentrations in Walker Lake at Station WL2 from 2016 – 2022 are shown in Figure 4.7. The 2022 mean chlorophyll-a concentration in the surface water at WL2 was 6.8 ug/L. The mean chlorophyll-a concentration decreased when compared to the 2021 value of 9.6 ug/L, and was similar to the mean values reported for 2016 through 2021. Chlorophyll-a concentration ranged from 6.3 ug/L to 7.2 ug/L during the 2022 study period. According to the Nurnberg criteria, the mean chlorophyll-a concentration indicates mesotrophic conditions in 2022.

In terms of trends, chlorophyll-a concentrations have been relatively consistent, but have declined very slightly since 2016. As more data are collected in subsequent years, this trend line will become more accurate.

4.6. Phytoplankton & Zooplankton Biomass

The quantity of phytoplankton (free floating, microscopic aquatic plants commonly referred to as algae) and macrophytes (vascular aquatic plants) are primary biological indicators of lake trophic conditions. Small aquatic animals, namely zooplankton and macroinvertebrates, graze upon algae and fragments of aquatic plants. Larger invertebrates and fish then consume the above grazers and to a lesser extent, some aquatic plants.

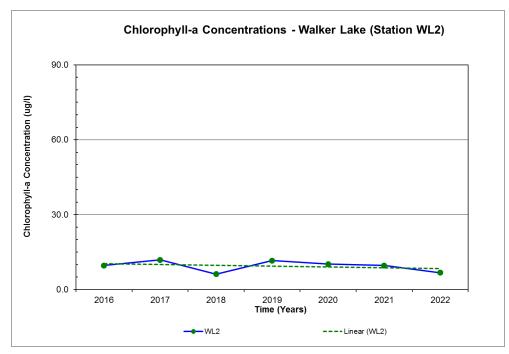


Figure 4.7 Chlorophyll-a Concentrations in Walker Lake (2016-2022)

Information about the plankton community composition and succession is extremely useful when attempting to gain a better understanding about various lake problems. For example, eutrophic lakes often support unbalanced phytoplankton communities characterized by very large numbers of relatively few species. The number of larger zooplankton will tend to decrease during periods when blue-green algae are dominant. Conversely, oligotrophic lakes and acidic lakes often have smaller populations of both phytoplankton and zooplankton. Acidic lakes typically will also have lower species diversity.

4.6.1. Phytoplankton

Phytoplankton are free floating, microscopic photosynthetic organisms that have little or no resistance to currents and live suspended in open water. Their forms may be unicellular, colonial, or filamentous. As photosynthetic organisms (primary producers), phytoplankton form the base of aquatic food chain and are grazed upon by zooplankton and herbivorous fish.

A healthy lake should support a diverse assemblage of phytoplankton, in which many algal species are represented. Excessive growth of a few species is usually undesirable. Such growth can result in dissolved oxygen depletion during the night, when the algae are respiring rather

Walker Lake 2022 Baseline Water Quality Monitoring Program Walker Lake Landowners Association

than photosynthesizing. Dissolved oxygen depletion also can occur shortly after a massive "algal bloom" due to increased levels of respiration by bacteria and other microorganisms that are metabolizing dead algal cells. Excessive growth of some species of algae, particularly members of the blue-green group, may cause taste and odor problems, release toxic substances to the water, or give the water an unattractive green soupy or scummy appearance.

Planktonic productivity is commonly expressed in terms of density and biomass. Phytoplankton densities are most frequently expressed as cells per milliliter (cells/ml). Biomass is commonly expressed on a mass per volume basis as micrograms per liter (μ g/l). Of the two, biomass provides a better estimate of the actual standing crop of phytoplankton in lake systems.

It should be noted that the nomenclature of phytoplankton taxonomy (i.e. scientific classification) has experienced some minor revisions. This is a regular occurrence in the scientific community; consequently, our scientists strive to stay up to date with this everchanging system. The most notable change regards the genus *Anabaena* in the phylum Cyanophyta. *Anabaena* has been the accepted name of this taxon for countless years. However, a change has occurred and now the genus *Anabaena* (Cyanophyta) is known as *Dolichospermum* (Cyanophyta).

The phytoplankton community in 2022 was represented by genera from seven different taxa: Bacillariophyta (diatoms), Chlorophyta (green algae), Chrysophyta (golden-brown algae), Cryptophyta (cryptomonads), Cyanophyta (blue-green algae), Euglenophyta (euglenoids), and Pyrrhophyta (fire algae). The total phytoplankton biomasses in Walker Lake ranged from 1,505 ug/L (micrograms per liter) to 7,179 ug/L for 2022, as shown in Figure 4.8. The highest phytoplankton biomass value was reported in July of 2022. In general, phytoplankton biomass below 2,500 ug/l are considered low, ranging from 2,500 to 7,500 ug/l are moderately low to moderately high, ranging from 7,500 to 10,000 ug/l are high, and above 10,000 are considered very high. Biomasses often exceeding 5,000 ug/l are perceived by many as "algal bloom" conditions.

Phytoplankton in Walker Lake during 2022 were well balanced (Figure 4.8) in terms of diversity, but somewhat well distributed in terms of biomass. During June, total biomass of the phytoplankton community was largely dominated by *Closterium* (Chlorophyta) followed by *Dinobryon* (Chrysophyta) and *Synedra* (Bacillariophyta). In July, a shift in taxa was observed when *Tabellaria* (Bacillariophyta) became dominant followed distantly by *Peridinium* (Pyrrhophyta) and further less dominant, *Dinobryon*. In August, *Closterium* became dominant followed closely *Tabellaria*. Other less dominant, but significant, taxa in August included *Peridinium* and *Cryptomonas* (Cryptophyta). As previously mentioned, biomass values for 2022, ranged from a minimum of 1,505 ug/L to a maximum of 7,179 ug/L (Figure 4.8). Overall, the phytoplankton assemblages were somewhat well distributed among taxa during the 2022 study period in terms of biomass. Generally speaking, desirable taxa were dominant from June to August and are beneficial to the lake.

An annual mean comparison of phytoplankton biomass and the corresponding biomass of cyanobacteria (Cyanophyta) is illustrated in Figure 4.9 for the study years. The biomass of cyanobacteria is considered to be relatively low in 2016 - 2017 and 2019 - 2022, when compared to overall phytoplankton biomass. This generally means the phytoplankton biomass is distributed among other, more palatable phytoplankton that beneficial zooplankton can utilize. During the 2018 study year, an increase in cyanobacteria biomass in relation to overall phytoplankton biomass was observed. This was likely a result of unusually high temperatures and excessive rainfall in the area, which, in turn set up for a prolific growing season for phytoplankton. The biomass ratio of cyanobacteria to total phytoplankton was, once again, favorable in 2022. The annual mean biomass values increased moderately in 2022, but remained consistent to levels observed in similar lakes in northeastern Pennsylvania. These observed biomass levels in 2022, although elevated in 2022, consisted of palatable, favorable taxa and not considered to be concerning at this time, due in part to the low ratio of cyanobacteria to total biomass. Furthermore, these 2022 values do continue to indicate a healthy balance of palatable plankton.

In terms of trends, annual mean total phytoplankton biomass and cyanobacteria biomass have varied considerably. Overall, the trend line suggests a very slight increase in annual mean total phytoplankton biomass. Conversely, the regression line indicates mean cyanobacteria biomass is decreasing very slightly since 2016.

4.6.2. Zooplankton

Zooplankton are suspended microscopic animals whose movements in a lake are primarily dependent upon water currents. The zooplankton of freshwater ecosystems are dominated primarily by four major groups: the protozoa, the rotifers and two subclasses of crustacea, the cladocerans (i.e., water fleas) and the copepods. Zooplankton are generally smaller than 2 millimeters (one-tenth of an inch) in size and primarily feed on algae, other zooplankton, and plant and animal particles. Zooplankton grazing can have a significant impact on phytoplankton species composition and productivity (i.e. biomass) through selective grazing (e.g., size of zooplankton influences what size phytoplankton are consumed) and nutrient recycling. Zooplankton are then consumed by fish, waterfowl, aquatic insects, and others, thereby playing a vital role in the transfer of energy from phytoplankton to higher trophic levels.

Zooplankton communities in 2022 were represented by genera from all four common taxa: Protozoa (protozoans), Rotifera (rotifers), Copepoda (crustacean), and Cladoceran (crustacean). From 2016 through 2020 and 2022, Protozoa were not observed. Composite zooplankton samples were collected during June through August of 2022. Zooplankton biomass values from June through August of 2022 are shown in Figure 4.10.

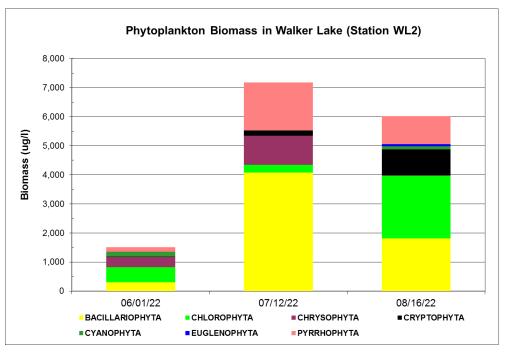


Figure 4.8 Phytoplankton Biomass in Walker Lake in 2022

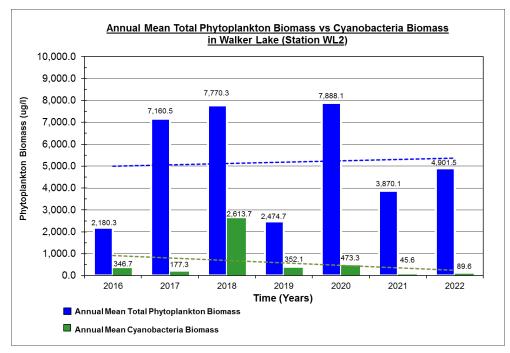


Figure 4.9 Mean Phytoplankton vs. Cyanobacteria Biomass in Walker Lake (2016-2022)

Prepared by Aqua Link, Inc.

In June, *Polyarthra* (Rotifera) were the most dominant followed by Nauplii of the subclass Copepoda. Less dominant, but significant, taxa in June included *Cyclops* (Copepoda), *Keratella* (Rotifera), *Bosmina* (Cladocera), and *Asplanchna* (Rotifera). In July, Copapoda Nauplii biomass significantly increased and became solely dominant. In August, the Nauplii decreased to less than half of the biomass observed in July, but remained the most dominant followed by *Bosmina*, *Asplanchna*, and *Keratella*. Overall, zooplankton populations were considered fairly well distributed among taxa during 2022, but were dominated by the taxa Copepoda, except in June when Rotifers were most dominant as illustrated in Figure 4.10. The overall total annual mean biomass values for 2022 were similar to those of 2018, 2019, and 2021 and remain moderately low as shown in Figure 4.11. Lower zooplankton biomass may be due to environmental factors, high numbers of juvenile fish, or a reduction in some species of more favorable palatable phytoplankton in recent years. In terms of trends, annual mean total zooplankton biomass has varied substantially. Overall, the trend line suggests a significant decrease in annual mean total zooplankton biomass.

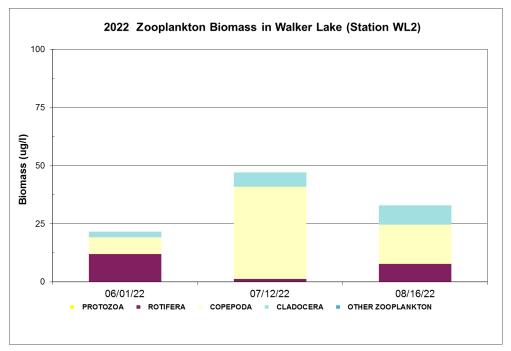


Figure 4.10 Zooplankton Biomass in Walker Lake in 2022

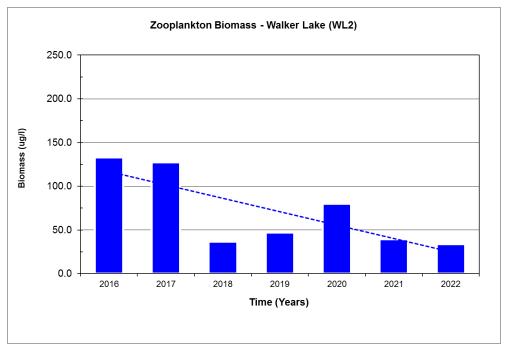


Figure 4.11 Mean Zooplankton Biomass in Walker Lake (2016-2022)

4.7. Carlson's Trophic State Index Values

Carlson's Trophic State Index (TSI) annual mean values were determined at WL2 for Secchi depth, chlorophyll-a, and total phosphorus (surface waters) on all study dates in 2022 (Table 4.3). It should be noted that the mean TSI values were determined by averaging the individual TSI values for Secchi disk values, chlorophyll-a, and total phosphorus.

Table 4.3	Mean Carlson's TS	SI Values at Station	WL2 in 2022
-----------	-------------------	----------------------	-------------

Year	Trophic State Index (TSI) Values			
	Secchi Depth	Chl-a	Total P	
2022	54	49	45	

Note: Mean TSI values determined by averaging the individual TSI values for each parameter during the 2022 study period.

In 2022, the TSI values for two of the three parameters; Secchi disk transparency and chlorophyll-a concentration decreased slightly from the values in 2021, but still remained relatively consistent to the 2016-2021 values (Figure 4.12). The decrease in TSI values for Secchi disk transparency and chlorophyll-a concentrations observed in 2022 is most likely indicative of normal seasonal fluctuation, but could possibly suggest a very slight improvement in water quality. The other TSI parameter measured was total phosphorus. This value decreased significantly from that observed in 2021. This decrease in the total phosphorus value, although substantial, is still within the range of normal seasonal fluctuation and does not necessarily suggest water quality has improved significantly at this time.

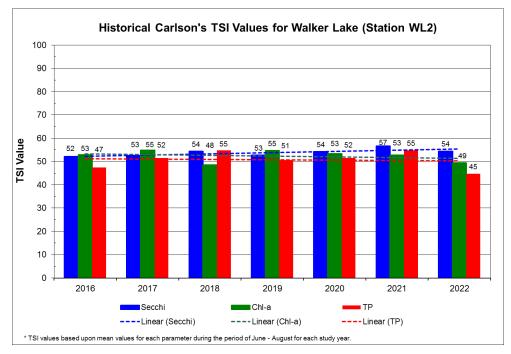


Figure 4.12 Carlson's TSI Values for Station WL2 (2016-2022)

In general, lakes are classified as hyper-eutrophic when TSI values are greater than 65. Lakes are classified as eutrophic when TSI values are greater than 50 and less than 65. Mesotrophic and oligotrophic lake conditions generally exist when TSI values range between 35 and 50 or are less than 35, respectively. Based upon each of the mean TSI values for Secchi depth, chlorophyll-a, and total phosphorus, Walker Lake was classified as boarder-line highly mesotrophic to slightly eutrophic in 2022. Lakes classified as boarder-line highly mesotrophic to slightly eutrophic typically contain moderately high amounts of nutrients, moderate water clarity for most of the year, and elevated amounts of algae (phytoplankton) and aquatic plants.

In terms of trends, the TSI values for chlorophyll-a and total phosphorus have been very consistent. On the other hand, the TSI values for Secchi disk transparency have been increasing slightly, indicating decreased visibility since 2016.

5. Conclusions and Recommendations

Walker Lake was classified as boarder-line highly mesotrophic to slightly eutrophic in 2022. The mean (average) Carlson TSI values for Secchi depth, chlorophyll-a, and total phosphorus were 54, 49, and 45. Overall, lakes classified as boarder-line highly mesotrophic to slightly eutrophic typically contain moderately high amounts of nutrients, moderate water clarity for most of the year, and elevated amounts of algae (phytoplankton) and aquatic plants. In terms of Carlson TSI values, lake water quality in 2022 was slightly improved, but relatively consistent to the 2016 - 2021 study years.

Walker Lake was strongly, thermally stratified during the months of June through August in 2022. The dissolved oxygen levels rapidly decreased within deeper lake waters (hypolimnion). The thermocline, which is the point where the temperature change is the greatest, divides the epilimnion (surface waters) and the hypolimnion (bottom waters), was located at a 2.0 to 4.5 meters (6.6 to 14.8 feet) during the study period.

Phytoplankton annual mean biomass values increased moderately in Walker Lake during 2022, but remained consistent to levels observed in similar lakes in northeastern Pennsylvania. Biomass values for 2022, ranged from a minimum of 1,505 ug/L to a maximum of 7,179 ug/L. These observed biomass levels in 2022, although elevated, consisted of palatable, favorable taxa and are not considered to be concerning at this time, due in part to the low ratio of cyanobacteria to total biomass. Furthermore, these 2022 values do continue to indicate a healthy balance of palatable plankton that beneficial zooplankton can utilize. Overall, the phytoplankton assemblages were somewhat well distributed among taxa during the 2022 study period in terms of biomass.

Overall, zooplankton populations were considered fairly well distributed among taxa during 2022, but was dominated by the taxa Copepoda, except in June when Rotifers were most dominant. The overall total annual mean biomass values for 2022 were similar to those of 2018, 2019, and 2021 and remain moderately low. This may be due to environmental factors such as, high numbers of juvenile fish or a reduction of palatable phytoplankton in recent years.

Based upon the above conclusions, Aqua Link offers the following recommendations to the Association for improving Walker Lake:

- 1. The Association should continue collecting baseline water quality data in 2023. Newly acquired water quality data should be analyzed and compared to those data in the existing 2016 2022 database. The overall importance of collecting baseline lake water quality data on an annual basis cannot be over emphasized. Without these data, lake associations become severely limited in their capacity of determining whether lake water quality is actually improving, degrading, or remaining unchanged. In addition, annual baseline data allows lake managers the ability to critically evaluate whether implemented in-lake or watershed restoration techniques are actually improving lake water quality.
- 2. Deep water samples should be collected at the primary lake station, Station WL2, on each of the study dates in 2023. These lake samples should be analyzed for dissolved reactive phosphorus and total phosphorus. In 2022, this was the first time that Aqua Link collected deep water samples for the analysis of these two forms of phosphorus. The collection of more phosphorus data for deep waters will allow us to determine whether internal phosphorus loading via anoxic lake sediments is significant in deeper lake waters. It should be noted that the lowest dissolved oxygen concentrations for deeper lake waters occurred in July and not August when Aqua Link collect additional lake samples for phosphorus analysis.
- 3. A more detailed lake water quality database should be developed using all lake water quality data reported by Aqua Link from 2016-22 and previous lake reports from 2002-16. (refer to *Walker Lake 2021 Baseline Water Quality Monitoring Program* Aqua Link 2022). In this 2021 report, a summary of the previous lake reports was included. Merging all lake water quality data for key parameters such as total phosphorus, chlorophyll-a, and Secchi depth transparency will provide significantly more detail about historical water quality changes in the lake.
- 4. Lake aeration should be considered for the at least for deeper lake waters in the southern end of the lake. A pocket of deep lake water is located at the primary lake monitoring station Station WL2. At this station, the dissolved oxygen levels often fall below 1 mg/L at water depths of 4 to 6 meters (13 to 20 feet). Aeration is expected to provide deep water habitat for fish during the hot summer months and reduce the internal release of phosphorus from anoxic in-lake sediments.

- 5. Some of the isolated stands of native macrophytes (rooted aquatic plants) found in Walker Lake should be allowed to propagate and spread. Overall, balanced lake ecosystems generally contain 20 to 30 percent macrophyte coverages. Macrophytes provide habitat for aquatic organisms including fish and compete with phytoplankton (microscopic free-floating algae) for nutrients. Therefore, it is expected that increased quantities of macrophytes will further improve the water clarity of Walker Lake.
- 6. Nuisance stands of bladderwort should continue to be controlled with aquatic pesticides in 2023. Bladderwort is a native plant to the region but it has the ability to spread quickly and impact aesthetics and desirable lake uses.

The treatment area of bladderwort in 2023 should remain the same as 2022 for continued thorough control and prevention of problematic spreading into more areas that can be both detrimental to recreational activities as well as being aesthetically unpleasant. Two larger scale bladderwort treatments, starting approximately mid- to late May, with a follow-up treatment to occur approximately mid-to late July to treat any regrowth or additional locations not targeted in the initial treatment are strongly recommended for the 2023 growing season as performed in recent years.

7. Any non-native, invasive aquatic plants should continue to be controlled immediately when identified in the lake. During the 2022 season, numerous stands of variable leaf milfoil were observed and subsequently treated. Variable leaf milfoil is a non-native, invasive aquatic plant that is quite aggressive.

Variable leaf milfoil has the ability to form a monoculture threatening species diversity and dramatically reducing the value of a waterbody by making boating, fishing, and swimming difficult, lowering property values, and affecting the general ecology of the lake. Also, if dense stands form, there is a potential for a fish kill when the plants die back for the season as a result of reduced dissolved oxygen concentrations when these plants decompose. It may be necessary to use a different herbicide, additional herbicide, or an increased dosage rate in future years for better control.

8. As in previous years, any problematic floating leaved and emergent vegetation as identified by the Association should be treated twice in 2023. These floating leaved treatments targeted both water lilies and water shield. Emergent species included cattails, rush, and several other plants located in the vicinity of the dam. It is typically recommended to treat these plants during mid to late June with a follow-up treatment in mid to late August.

It is extremely important to have a treatment contract in place prior to the spring of 2023. This enables Aqua Link enough time to have the aquatic pesticide permit modified, if necessary, approved, and also schedule these treatments on the appropriate time line in a proactive, rather than reactive manner.

9. The Association should evaluate the use of Phoslock in Walker Lake. Phoslock is a product that is applied to lakes which bind up in-lake phosphorus concentrations and slows down the internal release of phosphorus via anoxic in-lake sediments. This can be applied to the entire lake or a section of the lake. Phoslock is the commercial name for a bentonite clay which contains the mineral lanthanum. When added to lakes, sodium and/or calcium ions are exchanged for lanthanum, thereby releasing lanthanum from the clay into the surrounding waters. In turn, mineral called lanthanum, which has a high affinity to bind with free reactive phosphorus (FRP), will bind with soluble phosphorus to form an inert complex known as rhabdophane (LaPO4). This inert complex is extremely stable and insoluble. As a result, phosphorus will not release and become bio-available for the growth of algae.

Phoslock is a patented phosphorus locking technology to restore water quality in ponds, lakes and reservoirs. Phoslock was developed by the Australian national science agency, Commonwealth Scientific and Industrial Research Organization (CSIRO), to remove phosphorus from water bodies and restore water quality. For over a decade, Phoslock has been successfully used in water resource restoration programs around the world. Although Phoslock is a new technology to the United States (2010), it is rapidly emerging as the most effective phosphorus inactivation and water quality restoration solution for ponds, lakes and reservoirs.

10. Concentrated bacteria additives (MicroLife Clear Max by Hydro Logic Products) should be applied to the lake in 2023. A slight increase in overall water quality was observed in 2022. It would be anticipated these bacteria treatments would further improve water quality and clarity. If possible, the Association should consider treating the lake again and increasing the dosing rates of these bacteria additives in 2023. It should be noted that many bacteria additives including MicroLife Clear Max work even better when lakes are properly aerated.

MicroLife Clear Max should be applied to the lake in late May and continue through September. Ideally, these treatments should be applied every three to four weeks during this period. An earlier initial application is recommended in order to establish populations of beneficial bacteria before noxious blue-green bacteria populations have an opportunity to become established. MicroLife Clear bacteria additives have shown to dramatically decrease blue-green algae dominance when applied regularly during the growing season (May through September).

- 11. Copper sulfate treatments should continue to be an option to control nuisance mats of filamentous algae if needed. These treatments were performed in the past but they have not been required since Aqua Link began managing the lake in 2016.
- 12. A follow-up aquatic macrophyte (aquatic vascular plant) survey should be performed in 2023. The results of this survey should be compared to the macrophyte surveys performed in 2017 2022. As in the past, the primary objective of the 2023 survey would be to identify the aquatic plants (both native and non-native, invasive) and their overall densities at pre-determined locations throughout the lake. It should be noted that many non-native, invasive aquatic plants can be very aggressive and spread quickly by outcompeting other native plant species. Controlling the spread of these aquatic plants can be very costly if not detected early.
- 13. A follow-up fishery survey should be performed to reassess the overall health of the ecosystem, as well as improve the fishing. Fishery surveys provide important data on the current condition of the fishery. Fishery surveys were performed on Walker Lake during the fall of 2016-2017 & 2019-2022. Follow-up fishery surveys allow fisheries biologists to determine if the fisheries are improving, declining, or remaining unchanged. These surveys have become increasingly popular among lake associations. Increasing the number of fish in a lake, as well as the quality of game fish for anglers to catch, greatly improves the public's perception of the lake. By continuing to perform fishery surveys, a more accurate management plan can then be implemented to enhance the fishing in Walker Lake.

Aside from the game fish, the health of the entire aquatic ecosystem can be monitored through a fishery survey. Invasive species that have the ability to destroy an entire fish population can be discovered in a lake and, in turn, removed from the water body. Also, diseases in the fish population can be exposed, often avoiding mass mortality of thousands of fish. Over the past few years, some changes have been made in the lake. These changes include aquatic plant herbicide treatments and bacteria additive treatments. It is valuable to determine if these occurrences have had a negative effect on the ecosystem, and if so, what the best management plan would be to counteract any potentially negative effects. Fishery assessments can be performed during the spring or fall seasons and fishery management strategies can be determined from the findings of the survey.

All of our recommendations, as discussed above, will require a high level of expertise in the field of lake management. Some of our recommendations will also require obtaining state permits prior to implementation. Aqua Link is a nationally recognized consulting firm specializing in pond and lake management and we are fully capable of implementing all of the recommendations offered in this report.

6. Literature Cited

- Amand, A. S. and K. W. Wagner. 1999. Collection, Identification and Ecology of Freshwater Algae. 19th Annual Symposium for Lake and Reservoir Management. North American Lake Management Society. Madison, WI.
- Aqua Link, Inc. 2017-2022. Walker Lake 2016-2021 Baseline Water Quality Monitoring Program. Prepared for the Walker Lake Landowners Association.
- Aqua Link, Inc. 2018-2022. Walker Lake 2017-2021 Aquatic Plant Survey. Prepared for the Walker Lake Landowners Association.
- Aqua Link, Inc. 2017-2018 & 2020-2022. 2016-2017 & 2019-2021 Walker Lake Fisheries Survey – Final Report. Prepared for the Walker Lake Landowners Association.
- Aqua Link, Inc. 2022. 2021 Walker Lake Bathymetric Survey Final Report. Prepared for the Walker Lake Landowners Association.
- Carlson, R. E. 1977. A trophic state index for lakes. Limnol. Oceanogr. 22:361-369.
- Carlson, R. E. 1980. International Symposium on Inland Waters and Lake Restoration. EPA 440/5/81/010.
- Nurnberg, G. 2001. Eutrophication and Trophic State. Lake Line, Vol. 21, No. 1. North American Lake Management Society (NALMS), Madison, WI.
- U.S. EPA. 1980. Clean lakes program guidance manual. Report No. EPA-440/5-81-003. U.S. EPA, Washington, D.C.
- U.S. EPA. 1990. The Lake and Reservoir Restoration Guidance Manual, Second Edition. Report No. EPA-440/4-90-006. U.S. EPA, Washington, D.C.
- U.S. EPA. 1993. Fish and Fisheries Management in Lakes and Reservoirs Technical Supplement to Lake and Reservoir Restoration Guidance Manual. Report No. EPA-841-R-93-002. U.S. EPA, Washington, D.C.

APPENDIX A

Glossary of Lake & Watershed Management Terms

Glossary

Algae - Mostly aquatic, non-vascular plants that float in the water or attach to larger plants, rocks, and other substrates. Also called phytoplankton, these individuals are usually visible only with a microscope. They are a normal and necessary component of aquatic life, but excessive numbers can make the water appear cloudy and colored.

Alkalinity - The acid-neutralizing capacity of water. It is primarily a function of the carbonate, bicarbonate, and hydroxide content in water. The lower the alkalinity, the less capacity the water has to absorb acids without becoming more acidic.

Ammonia (NH3) - A nitrogen-containing substance which may indicate recently decomposed plant or animal material.

Benthos - The communities of aquatic life which dwell in or on the bottom sediments of a water body.

Chlorophyll - Pigments (mostly green) in plants, including algae, that play an important part in the chemical reactions of photosynthesis. A measurement of chlorophyll-a (one type of chlorophyll) is commonly used as a measure of the algae content of water.

Conductivity (Cond) - A measure of water's capacity to convey an electric current. It is related to the total amount of dissolved charged substances in the water. Therefore, it can be used as a general indicator of the quality of the water and can also suggest presence of unidentified material in the water. It is often used as a surrogate for salinity measurements.

Combined Sewer Overflow (CSO) -Discharges of combined sewage and stormwater into water bodies during very wet or storm weather. These discharges occur to relieve the sewer system as it becomes overloaded with normal sewer flow and increased storm run-off. The term is also used to denote a pipe that discharges those overflows.

Dissolved oxygen (DO) - Oxygen that is dissolved in the water. Certain amounts are necessary for life processes of aquatic animals. The oxygen is supplied by the photosynthesis of plants, including algae, and by aeration. Oxygen is consumed by animals and plants at night, and bacterial decomposition of dead organic matter (plant matter and animal waste).

Effluent - Liquids discharged from sewage treatment plants, septic systems, or industrial sources to surface waters.

Epilimnion - The warmer, well-lit surface waters of a lake that are thermally separated from the colder (hence denser), water at the bottom of the lake when a lake is stratified.

Eutrophication - The acceleration of the loading of nutrients to a lake by natural or humaninduced causes. The increased rate of delivery of nutrients results in increased production of algae and consequently, poor water transparency. Human-induced (cultural) eutrophication may be caused by input of treated sewage to a lake, deforestation of a watershed, or the urbanization of a watershed.

Fecal Coliform Bacteria - Bacteria from the intestines of warm-blooded animals. Most of the bacteria are not in themselves harmful, so they are measured or counted as an indicator of the possible presence of harmful bacteria.

Groundwater - Water stored beneath the surface of the earth. The water in the ground is supplied by the seepage of rainwater, snowmelt, and other surface water into the soil. Some groundwater may be found far beneath the earth surface, while other groundwater may be only a few inches from the surface. Groundwater discharges into lowland streams to maintain their baseflow.

Hydrology -The science dealing with the properties, distribution and circulation of water. The term usually refers to the flow of water on or below the land surface before reaching a stream or man-made structure.

Hypolimnion - The dark, cold, bottom waters of a lake that are thermally separated from the warmer (hence less dense) surface waters when a lake is stratified.

Invertebrates - Animals without internal skeletons. Some require magnification to be seen well, while others such as worms, insects, and crayfish are relatively large. Invertebrates living in stream and lake sediments are collected as samples to be identified and counted. In general, more varied invertebrate communities indicate healthier water bodies.

Limiting nutrient - The nutrient that is in lowest supply relative to the demand. The limiting nutrient will be exhausted first by algae which require many nutrients and light to grow. Inputs of the limiting nutrient will result in increased algal production, but as soon as the limiting nutrient is exhausted, growth stops. Phytoplankton growth in lake waters of temperate lowland areas is generally phosphorus limited.

Limnology - Scientific study of inland waters.

Littoral zone - portion of a water body extending from the shoreline lakeward to the greatest depth occupied by rooted plants.

Loading rate - Addition of a substance to a water body; or the rate at which the addition occurs. For example, streams load nutrients to lakes at various rates as in "500 kilograms per year (500 kg/yr)" or "227 pounds per year (227 lb/yr)."

Macrophytes - rooted and floating aquatic plants, larger (macro-) than the phytoplankton.

Mesotrophic - A condition of lakes that is characterized by moderate concentrations of nutrients, algae, and water transparency. A mesotrophic lake is not as rich in nutrients as a eutrophic lake, but richer in nutrients than an oligotrophic lake.

Monomictic - A lake which has one mixing and one stratification event per year. If a lake does not freeze over in the winter, the winter winds will mix the waters of the lake. In summer, the lake resists mixing and becomes stratified because the surface waters are warm (light) and the bottom waters are cold (dense). Deep lakes in the Puget lowlands are monomictic lakes.

Nitrate, **nitrite** (**NO3**, **NO2**) - Two types of nitrogen compounds. These nutrients are forms of nitrogen that algae may use for growth.

Nitrogen - One of the elements essential as a nutrient for growth of organisms.

Non-point source pollution - Pollution that originates from diffuse areas and unidentifiable sources, such as agriculture, the atmosphere, or ground water.

Nutrients - Elements or compounds essential for growth of organisms.

Oligotrophic - A condition of lakes characterized by low concentrations of nutrients and algae and resulting good water transparency. An oligotrophic lake has less nutrients than a mesotrophic or eutrophic lake.

Pathogens -Microorganisms that can cause disease in other organisms or humans, animals, and plants. Pathogens include bacteria, viruses, fungi, or parasites found in sewage, in runoff from farms or city streets, and in water used for swimming. Pathogens can be present in municipal, industrial, and nonpoint source discharges.

Pelagic Zone - Deep, open water area of a lake away from the edge of the littoral zone towards the center of the lake.

pH - Measure of the acidity of water on a scale of 0 to 14, with 7 representing neutral water. A pH less than 7 is considered acidic and above 7 is basic.

Phosphorus - One of the elements essential as a nutrient for the growth of organisms. In western Washington lakes, it is usually the algae nutrient in shortest supply relative to the needs of the algae. Phosphorus occurs naturally in soils, as well as in organic material. Various measures of phosphorus in water samples are made, including total-phosphorus (TP) and the dissolved portion of the phosphorus (orthophosphorus).

Photic zone - The lighted region of a lake where photosynthesis occurs.

Phytoplankton - Floating, mostly microscopic algae (plants) that live in water.

Point-source Polution - An input of pollutants into a water body from discrete sources, such as municipal or industrial outfalls.

Primary Treatment - The first stage of wastewater treatment involving removal of debris and solids by screening and settling.

Pump Station -A structure used to move wastewater uphill, against gravity.

Regulator -A structure that controls the flow of wastewater from two or more input pipes to a single output. Regulators can be used to restrict or halt flow, thus causing wastewater to be stored in the conveyance system until it can be handled by the treatemnt plant.

Salmonids - Salmon, trout, char and whitefish species of fish.

Secchi depth - Measure of transparency of water obtained by lowering a 10 cm black and white disk into water until it is no longer visible.

Secondary Treatment - Following primary treatment, bacteria are used to consume organic wastes. Wastewater is then disinfected and discharged through an outfall.

Separation -A method for controlling combined sewer overflow whereby the combined sewer is separated into both a sanitary sewer and a storm drain, as is the practice in new development.

Sewage -That portion of wastewater that is composed of human and industrial wastes from homes, businesses, and industries.

Standard - A legally established allowable limit for a substance or characteristic in the water, based on criteria. Enforcement actions by the appropriate agencies can be taken against parties who cause violations.

Stratification of lakes - A layering effect produced by the warming of the surface waters in many lakes during summer. Upper waters are progressively warmed by the sun and the deeper waters remain cold. Because of the difference in density (warmer water is lighter), the two layers remain separate from each other: upper waters "float" on deeper waters and wind induced mixing occurs only in the upper waters. Oxygen in the bottom waters may become depleted. In autumn as the upper waters cool, the whole lake mixes again and remains mixed throughout the winter, or until it freezes over.

Stormwater -Water that is generated by rainfall and is often routed into drain systems.

Thermocline - Depth in a stratified lake where the greatest change in temperature occurs. Separates the epilimnion from the hypolimnion

Total suspended solids (TSS) - Particles, both mineral (clay and sand) and organic (algae and small pieces of decomposed plant and animal material), that are suspended in water.

Toxic -Causing death, disease, cancer, genetic mutations, or physical deformations in any organism or its offspring upon exposure, ingestion, inhalation, or assimilation.

Transparency - A measure of the clarity of water in a lake, which is measured by lowering a standard black and white Secchi disk into the water and recording the depth at which it is no longer visible. Transparency of lakes is determined by the color of the water and the amount of material suspended in it. Generally in colorless waters of the Puget lowland, the transparency of the water in summer is determined by the amount of algae present in the water. Suspended silt particles may also have an effect, particularly in wet weather.

Trophic status - Rating of the condition of a lake on the scale of oligotrophic-mesotrophiceutrophic (see definition of these terms).

Turbidity - Cloudiness of water caused by the suspension of minute particles, usually algae, silt, or clay.

Wastewater -Total flow within the sewage system. In combined systems, it includes sewage and stormwater.

Water Column - Water in a lake between the surface and sediments. Used in vertical measurements used to characterize lake water.

Watershed - The areas that drain to surface water bodies, including lakes, rivers, estuaries, wetlands, streams, and the surrounding landscape.

Water of Statewide Significance - Legal term from the state Shoreline Management act, which recognizes particular bodies of water and sets criteria and standards for their protection.

Zooplankton - Small, free swimming or floating animals in water, many are microscopic.

Source: King County, Washington (http://dnr.metrokc.gov/wlr/waterres/lakes/glossary)

APPENDIX B

Lake Water Quality Data

Lake Water Quality Data

Parameter:

pH (pH) Alkalinity (Alk) Hardness Conductivity (Cond) Conductivity (Cond) Specific Conductance (Sp Cond) Total Phosphorus (TP) Dissolved Reactive Phosphorus (DRP) Nitrate (NO3) Nitrite (NO2) Ammonia nitrogen (NH3) Total Kjeldahl Nitrogen (TKN) Total Suspended Solids (TSS) Turbidity Color Oil & Grease

Iron (Fe) total/dissolved Manganese (Mn) total/dissolved

Dissolved Oxygen (Dissol Oxy) Temperature (Temp) Secchi Disk Depth

Chlorophyll-a Fecal coliform bacteria (FC) Fecal streptococcus bacteria (FS) Phytoplankton Phytoplankton Zooplankton Zooplankton Prepared by Aqua Link, Inc.

Units of Measure:

Expressed in Standard Units (s.u.) Expressed in milligrams per liter as calcium carbonate(mg/l as CaCO3) Expressed in milligrams per liter as calcium carbonate(mg/l as CaCO3) Expressed in micromhos per cm (umhos/cm) Expressed in microsiemens per cm (uS/cm) Expressed in micromhos per cm (umhos/cm) @ 25.0 degrees Celsius Expressed as milligrams per liter as phosphorus (mg/l as P) Expressed in milligrams per liter as phosphorus (mg/l as P) Expressed in milligrams per liter as nitrogen (mg/l as N) Expressed in milligrams per liter as nitrogen (mg/l as N) Expressed in milligrams per liter as nitrogen (mg/l as N) Expressed in milligrams per liter as nitrogen (mg/l as N) Expressed in milligrams per liter (mg/l) Epresssed in ntu's (nephelometric turbidity units) Expressed in Pt/Co Units Expressed in milligrams per liter (mg/l)

Expressed in milligrams per liter (mg/l) Expressed in milligrams per liter (mg/l)

Expressed in milligrams per liter (mg/l) Expressed in degress Celsius (degrees C) Expressed in meters (m)

Expressed in micrograms per liter (ug/l) Expressed as number of organisms per one hundred milliliters (No./100 ml) Expressed as number of organisms per one hundred milliliters (No./100 ml) Expressed as number of organisms per liter (No.per ml) Expressed as biomass in micrograms per liter (ug/l) Expressed as number of organisms per liter (No.per liter) Expressed as biomass in micrograms per liter (ug/l)

Station No. WL1 - Near dam center Station No. WL2 - Uplake center Prepared by Aqua Link, Inc.

Insitu Water Quality Data - Station WL1 and WL2

														versions
Date M/D/Y	Time hh:mm:ss	Site	Depth m	Temp C	DO% %	DO Conc mg/L	Cond uS/cm	SpCond uS/cm	pH s.u.	TDS mg/L	Salinity ppt	ORP mV	Depth (feet)	Temp (Degrees F
06/01/22	7:54:15	WL1	0.0	23.90	99.7	8.41	57	58	6.28	38	0.03	20	0.00	75.0
06/01/22	7:54:50	WL1	0.5	23.88	100.6	8.49	53	54	6.48	35	0.02	3	1.64	75.0
06/01/22	7:55:22	WL1	1.0	21.88	102.2	8.96	51	54	6.53	35	0.02	-5	3.28	71.4
06/01/22	7:55:51	WL1	1.5	20.15	95.9	8.69	53	58	6.41	38	0.03	-12	4.92	68.3
06/01/22	7:56:27	WL1	2.0	19.59	82.8	7.59	47	52	6.25	34	0.02	-15	6.56	67.3
06/01/22	7:57:01	WL1	2.5	19.23	64.8	5.98	48	54	6.13	35	0.02	-20	8.20	66.6
06/01/22	7:57:24	WL1	2.8	18.73	53.6	5.00	53	60	6.21	39	0.03	-38	9.23	65.7
<insert>></insert>	-													
	Min		0.0	18.73	53.6	5.00	47	52	6.13	34	0.02	-38	0.00	65.71
	Max		2.8	23.90	102.2	8.96	57	60	6.53	39	0.03	20	9.23	75.02
	Max - Min		2.8	5.17	48.6	3.96	10	8	0.40	5	0.01	57	9.23	9.31
	Count		7	7	7	7	7	7	7	7	7	7	7	7
													Cor	versions
Date	Time		Depth	Temp	DO%	DO Conc	Cond	SpCond	рН	TDS	Salinity	ORP	Depth	Temp
M/D/Y	hh:mm:ss	Site	m	С	%	mg/L	uS/cm	uS/cm	s.u.	mg/L	ppt	mV	(feet)	(Degrees F
06/01/22	8:09:27	WL2	0.0	23.39	95.4	8.12	50	52	6.70	34	0.02	-29	0.00	74.1
06/01/22	8:10:10	WL2	0.0	23.39	93.4 97.4	8.29	50 50	52 52	6.76	34	0.02	-25	1.64	74.1
06/01/22	8:10:41	WL2	1.0	23.39	97.4 98.0	8.34	48	52 50	6.77	34	0.02	-35 -36	3.28	74.1
06/01/22	8:10:41	WL2 WL2	1.5	20.83	98.0 98.3	8.79	40 45	30 49	6.69	32	0.02	-36 -36	3.20 4.92	69.5
06/01/22	8:11:42	WL2 WL2	2.0	20.83 19.90	90.3 101.3	9.23	45 45	49 49	6.65	32	0.02	-30 -37	4.92 6.56	67.8
06/01/22	8:12:18	WL2 WL2	2.0	19.90	90.4	9.23 8.56	43 42	49 48	6.25	32	0.02	-37 -31	8.20	64.3
06/01/22	8:12:48	WL2 WL2	2.5 3.0	16.46	90.4 80.7	7.89	42 44	40 52	6.05	34	0.02	-31	9.84	61.6
06/01/22	8:13:31	WL2 WL2	3.0	14.21	72.4	7.69	44 39	52 49	6.00	34 32	0.02	-25 -28	9.04 11.48	57.6
00/01/22		WL2 WL2					39 36						13.12	
06/01/22	8:14:11	WL2 WL2	4.0	12.10	56.9	6.12		48 48	5.93	31 31	0.02 0.02	-35	13.12	53.8
		VVLZ	4.5	11.14 10.02	42.6 26.9	4.68	35		5.82	31	0.02	-37 57		52.1
06/01/22 06/01/22	8:14:52	14/1 2			2n 9	3.03	36	51	5.73	33 42	0.02	-57	16.40	50.0 48.6
06/01/22 06/01/22	8:15:22	WL2	5.0 5.5			0.00	15	CF.						48 b
06/01/22 06/01/22 06/01/22	8:15:22 8:15:53	WL2	5.5	9.23	1.8	0.20	45 58	65 84	5.91			-81	18.04	
06/01/22 06/01/22 06/01/22 06/01/22	8:15:22 8:15:53 8:16:25	WL2 WL2	5.5 6.0	9.23 8.68	1.8 0.10	0.10	58	84	6.19	54	0.04	-112	19.68	47.6
06/01/22 06/01/22 06/01/22 06/01/22 06/01/22	8:15:22 8:15:53	WL2	5.5	9.23	1.8									
06/01/22 06/01/22 06/01/22 06/01/22 06/01/22	8:15:22 8:15:53 8:16:25 8:16:44	WL2 WL2	5.5 6.0 6.4	9.23 8.68 8.57	1.8 0.10 0.10	0.10 0.10	58 72	84 105	6.19 6.48	54 68	0.04 0.05	-112 -140	19.68 20.84	47.6 47.4
06/01/22	8:15:22 8:15:53 8:16:25 8:16:44 	WL2 WL2	5.5 6.0 6.4 0.0	9.23 8.68 8.57 8.57	1.8 0.10 0.10 0.1	0.10 0.10 0.10	58 72 35	84 105 48	6.19 6.48 5.73	54 68 31	0.04 0.05	-112 -140 -140	19.68 20.84 0.00	47.6 47.4 47.43
06/01/22 06/01/22 06/01/22 06/01/22 06/01/22	8:15:22 8:15:53 8:16:25 8:16:44	WL2 WL2	5.5 6.0 6.4	9.23 8.68 8.57	1.8 0.10 0.10	0.10 0.10	58 72	84 105	6.19 6.48	54 68	0.04 0.05	-112 -140	19.68 20.84	47.6 47.4

Station No. WL1 - Near dam center Station No. WL2 - Uplake center Prepared by Aqua Link, Inc.

Insitu Water Quality Data - Station WL1 and WL2

														oversions
Date M/D/Y	Time	Site	Depth	Temp C	DO% %	DO Conc	Cond uS/cm	SpCond uS/cm	рН	TDS	Salinity	ORP	Depth (foot)	Temp (Degrees F
W/D/ f	hh:mm:ss	Site	m	د د	70	mg/L	us/cm	u5/cm	s.u.	mg/L	ppt	mV	(feet)	(Degrees i
07/12/22	10:23:05	WL1	0.0	25.28	95.7	7.87	48	48	6.29	31	0.02	-20	0.00	77.5
07/12/22	10:23:42	WL1	0.5	25.28	95.7	7.87	48	47	6.44	31	0.02	-26	1.64	77.5
07/12/22	10:24:09	WL1	1.0	25.23	96.1	7.91	49	49	6.50	32	0.02	-29	3.28	77.4
07/12/22	10:25:02	WL1	1.5	25.14	96.8	7.98	48	48	6.56	31	0.02	-30	4.92	77.3
07/12/22	10:25:34	WL1	2.0	24.97	97.2	8.03	48	48	6.58	32	0.02	-31	6.56	76.9
07/12/22	10:25:57	WL1	2.5	24.88	95.4	7.90	48	48	6.57	31	0.02	-30	8.20	76.8
07/12/22	10:26:16	WL1	2.7	24.83	94.2	7.81	48	48	6.50	31	0.02	-31	8.90	76.7
<insert>></insert>														
	Min		0.0	24.83	94.2	7.81	48	47	6.29	31	0.02	-31	0.00	76.69
	Max		2.7	25.28	97.2	8.03	49	49	6.58	32	0.02	-20	8.90	77.50
	Max - Min		2.7	0.45	3.0	0.22	1	2	0.29	1	0.00	11	8.90	0.81
	Count		7	7	7	7	7	7	7	7	7	7	7	7
													Cor	versions
Date	Time		Depth	Temp	DO%	DO Conc	Cond	SpCond	pН	TDS	Salinity	ORP	Depth	Temp
M/D/Y	hh:mm:ss	Site	m	c.	%	mg/L	uS/cm	uS/cm	s.u.	mg/L	ppt	mV	(feet)	(Degrees F
07/12/22	10:38:34	WL2	0.0	24.91	98.0	8.11	48	48	6.78	31	0.02	-36	0.00	76.8
07/12/22	10:39:00	WL2	0.5	24.89	99.2	8.21	48	48	6.71	31	0.02	-33	1.64	76.8
07/12/22	10:39:29	WL2	1.0	24.83	100.6	8.34	47	47	6.72	30	0.02	-34	3.28	76.7
07/12/22	10:40:02	WL2	1.5	24.80	101.6	8.43	47	47	6.72	31	0.02	-34	4.92	76.6
07/12/22	10:40:32	WL2	2.0	24.79	102.4	8.49	48	49	6.71	32	0.02	-33	6.56	76.6
07/12/22	10:41:02	WL2	2.5	22.16	86.3	7.52	44	46	6.39	30	0.02	-33	8.20	71.9
07/12/22	10:41:41	WL2	3.0	18.84	31.2	2.90	41	47	5.96	30	0.02	-23	9.84	65.9
07/12/22	10:41:58	WL2	3.5	15.82	15.8	1.57	36	43	5.87	28	0.02	-22	11.48	60.5
07/12/22	10:42:16	WL2	4.0	13.48	2.7	0.28	35	45	5.79	29	0.02	-20	13.12	56.3
07/12/22	10:42:34	WL2	4.5	12.57	0.10	0.10	32	42	5.77	28	0.02	-20	14.76	54.6
07/12/22	10:42:48	WL2	5.0	11.34	0.10	0.10	40	54	5.80	35	0.02	-22	16.40	52.4
07/12/22	10:43:02	WL2	5.5	10.16	0.10	0.10	52	73	5.89	48	0.03	-29	18.04	50.3
07/12/22	10:43:16	WL2	6.0	9.40	0.10	0.10	84	119	6.14	78	0.06	-79	19.68	48.9
07/12/22	10:43:28	WL2	6.3	9.06	0.10	0.10	95	136	6.42	88	0.06	-104	20.71	48.3
<insert>></insert>	-													
	Min		0.0	9.06	0.1	0.10	32	42	5.77	28	0.02	-104	0.00	48.31
	Мах		6.3	24.9	102.4	8.5	95.0	136.0	6.8	88	0.1	-19.6	20.71	76.84
	Marco Males		6.3	15.9	102.3	8.4	63.0	94.0	1.0	60	0.0	84.1	20.71	28.53
	Max - Min		0.5	15.9	102.5	0.4	00.0	94.0	1.0	00	0.0	04.1	20.71	20.00

Station No. WL1 - Near dam center Station No. WL2 - Uplake center Prepared by Aqua Link, Inc.

Insitu Water Quality Data - Station WL1 and WL2

													Cor	versions
Date	Time		Depth	Temp	DO%	DO Conc	Cond	SpCond	рН	TDS	Salinity	ORP	Depth	Temp
M/D/Y	hh:mm:ss	Site	m	С	%	mg/L	uS/cm	uS/cm	s.u.	mg/L	ppt	mV	(feet)	(Degrees F
08/16/22	10:59:45	WL1	0.0	25.75	81.0	6.60	80	79	6.76	51	0.04	-26	0.00	78.3
08/16/22	11:00:18	WL1	0.5	25.54	77.5	6.34	81	80	6.64	52	0.04	-20	1.64	78.0
08/16/22	11:00:47	WL1	1.0	24.53	76.5	6.38	76	77	6.58	50	0.03	-20	3.28	76.2
08/16/22	11:01:21	WL1	1.5	24.24	67.5	5.66	81	82	6.48	54	0.04	-18	4.92	75.6
08/16/22	11:01:51	WL1	2.0	24.17	62.1	5.21	80	81	6.41	53	0.04	-16	6.56	75.5
08/16/22	11:02:07	WL1	2.5	24.15	60.5	5.08	77	79	6.41	51	0.04	-17	8.20	75.5
08/16/22	11:02:16	WL1	2.5	24.16	57.5	4.83	79	81	6.48	52	0.04	-27	8.24	75.5
<insert>></insert>	_		-					-		-				
	Min		0.0	24.15	57.5	4.83	76	77	6.41	50	0.03	-27	0.00	75.47
	Max		2.5	25.75	81.0	6.60	81	82	6.76	54	0.04	-16	8.24	78.35
	Max - Min		2.5	1.60	23.5	1.77	5	5	0.35	4	0.01	11	8.24	2.88
	Count		7	7	7	7	7	7	7	7	7	7	7	7
													Cor	iversions
Date	Time		Depth	Temp	DO%	DO Conc	Cond	SpCond	рН	TDS	Salinity	ORP	Depth	Temp
M/D/Y	hh:mm:ss	Site	m	С	%	mg/L	uS/cm	uS/cm	s.u.	mg/L	ppt	mV	(feet)	(Degrees F
08/16/22	9:47:54	WL2	0.0	04.50	86.9	7.05	73	74	7.44	48	0.03	-29	0.00	76.0
		WL2		24.53		7.25	73	74 79					0.00	76.2
08/16/22 08/16/22	9:49:05	WL2	0.5	24.48	84.2	7.02 7.09		79 79	6.99	51 52	0.04	-10	1.64	76.1
08/16/22	9:49:56		1.0	24.47	85.0		79 77	79 78	6.90	52 51	0.04	-6 -1	3.28 4.92	76.0
08/16/22	9:50:47	WL2 WL2	1.5 2.0	24.41 24.38	85.2 86.0	7.12 7.19	80	78 81	6.84	51	0.04	-1 1	4.92 6.56	75.9 75.9
08/16/22	9:51:21	WL2 WL2	2.0		79.5	6.71	80 76	78	6.82	52 51	0.04	4	8.20	75.9
08/16/22	9:51:58	WL2 WL2		23.86 21.27	79.5 43.4	3.85	76 71	78 76	6.69	51 49	0.04	4 5	8.20 9.84	74.9
	9:52:32 9:52:59	WL2 WL2	3.0			3.85 2.31		76 71	6.19		0.03	э -1		70.3 65.2
08/16/22 08/16/22	9:52:59 9:53:30	WL2 WL2	3.5	18.43 15.63	24.6 17.2		62 57	71 70	6.10 6.06	46	0.03	-1 -6	11.48 13.12	
			4.0	15.63		1.71		70 78	6.06	45 51	0.03		13.12	60.1 55.3
08/16/22	9:54:13	WL2	4.5		9.9	1.04	60 62		5.96	51	0.04	-10		
08/16/22 08/16/22	9:54:44	WL2	5.0 5.5	11.58	4.9	0.53	63 105	85	5.91	55	0.04	-20	16.40	52.8
	9:55:14	WL2	5.5	10.35	1.1	0.12	105	146	6.22	95	0.07	-102	18.04	50.6
08/16/22	9:55:37	WL2	6.0	9.71	0.1	0.10	142	201	6.56	130	0.1	-127	19.68	49.5
08/16/22	9:55:50	WL2	6.2	9.62	0.1	0.10	179	253	6.70	165	0.12	-134	20.47	49.3
<insert>></insert>	-													
	Min		0.0	9.62	0.1	0.10	57	70	5.91	45	0.03	-134	0.00	49.32
	Max		6.2	24.53	86.9	7.25	179	253	7.44	165	0.12	5	20.47	76.15
	Max - Min		6.2	14.91	86.8	7.15	122	183	1.53	120	0.09	139	20.47 14	26.84

Walker Lake Project No. 1577-31 Station No. WL1 - Near dam center Station No. WL2 - Uplake center

			Sp Cond**	pH**	Alkalinity	Hardness		DRP	ТР		Ammonia	Nitrate		Nitrite
Station	Depth	Date	(uS/cm)	(std units)	(mg/I as CaCO3)	(mg/l as CaCO3)		(mg/I as P)	(mg/I as P)		(mg/l as N)	(mg/l as N)		(mg/I as N)
WL2	surface	06/01/22	50	6.77	8.0	12.0	b	0.002	0.020	b	0.010	0.080	b	0.003
WL2	surface	07/12/22	47	6.72	12.0	14.0	b	0.002	0.020		0.040	0.040	b	0.003
WL2	surface	08/16/22	79	6.90	19.0	16.0	b	0.002	0.010		0.010	0.040	b	0.003
< <insert>></insert>														
		Min	47	6.72	8.0	12.0	b	0.002	0.010	b	0.010	0.040	b	0.003
		Max	79	6.90	19.0	16.0	b	0.002	0.020		0.040	0.080	b	0.003
		Mean	59	6.80	13.0	14.0	b	0.002	0.017		0.020	0.053	b	0.003
		Median	50	6.77	12.0	14.0	b	0.002	0.020		0.010	0.040	b	0.003
		Stds	18	0.09	5.6	2.0		0.000	0.006		0.017	0.023		0.000
		Std	14	0.08	4.5	1.6		0.000	0.005		0.014	0.019		0.000
		Count	3	3	3	3		3	3		3	3		3
			Sp Cond**	pH**	Alkalinity	Hardness		DRP	ТР		Ammonia	Nitrate		Nitrite
Station	Depth	Date	(uS/cm)	(std units)	(mg/l as CaCO3)	(mg/l as CaCO3)		(mg/l as P)	(mg/l as P)		(mg/l as N)	(mg/l as N)		(mg/I as N)
WL2 < <insert>></insert>	bottom	08/16/22	146	6.22			b	0.002	0.020					
		Min	146	6.22			b	0.002	0.020					
		Max	146	6.22			b	0.002	0.020					
		Mean	146	6.22			b	0.002	0.020					
		Median	146	6.22			b	0.002	0.020					
		Stds												
		Std												
		Count	1	1				1	1					

Walker Lake Project No. 1577-31 Station No. WL1 - Near dam center Station No. WL2 - Uplake center

Station	Depth	Date	Nitrate + Nitrite (mg/l as N)		TKN (mg/l as N)	TIN* (mg/l as N)	TN* (mg/I as N)	TN:TP*	TIN:DRP*		TSS (mg/l)	Chlorophyll-a (ug/l)	Pheophytin-a (ug/l)
otation	Deptil	Date	(ing/i as it)		(ing/i as it)	(ing/1 as it)	(ing/i as it)		TIN.DI		(119/1)	(ug/i)	(ug/i)
WL2	surface	06/01/22	0.083		0.440	0.093	0.523	26.2	46.5	b	2.0	6.3	2.3
WL2	surface	07/12/22	0.043	b	0.100	0.083	0.143	7.2	41.5	b	2.0	6.8	3.3
WL2	surface	08/16/22	0.043		0.440	0.053	0.483	48.3	26.5	b	2.0	7.2	3.1
< <insert>></insert>													
		Min	0.043	b	0.100	0.053	0.143	7.2	26.5	b	2.0	6.3	2.3
		Max	0.083		0.440	0.093	0.523	48.3	46.5	b	2.0	7.2	3.3
		Mean	0.056		0.327	0.076	0.383	27.2	38.2	b	2.0	6.8	2.9
		Median	0.043		0.440	0.083	0.483	26.2	41.5	b	2.0	6.8	3.1
		Stds	0.023		0.196	0.021	0.209	20.6	10.4		0.0	0.5	0.5
		Std	0.019		0.160	0.017	0.170	16.8	8.5		0.0	0.4	0.4
		Count	3		3	3	3	3	3		3	3	3
			Nitrate + Nitrite		TKN	TIN*	TN*				TSS	Chlorophyll-a	Pheophytin-a
Station	Depth	Date	(mg/l as N)		(mg/l as N)	(mg/l as N)	(mg/I as N)	TN:TP*	TIN:DRP*		(mg/l)	(ug/l)	(ug/l)
WL2 < <insert>></insert>	bottom	08/16/22								b	2.0		
		Min								b	2.0		
		Max								b	2.0		
		Mean								b	2.0		
		Median								b	2.0		
		Stds								5	2.0		
		Std											
		Count									1		
							Analytical Lake	Water Quality	Data				

alytical Lake Water Quality Data

Note(s):

TIN denotes total inorganic nitrogen and is the sum of nitrite, nitrate, and ammonia nitrogen Nitrate + Nitrite is the sum of nitrate and nitrite

TN denotes total nitrogen and is the sum of total Kjeldahl nitrogen and nitrite and nitrate nitrogen

TN:TP denotes the ratio ot total nitrogen and total phosphorus

TIN:DRP denotes the ratio of total inorganic nitrogen and dissolved reactive phosphorus

(b) denotes below detection limit, therefore data reported as the detection limit

(*) indicates calculated value

(**) indicates *in-situ* field data collected on the study date (also refer to *in-situ* data)

(^) indicates an outlier value, due to sampling and/or laboratory error; not used for calculations.

(^^) indicates inconsistent values outside of typical ranges

Station	Depth	Date	Sp Cond** (uS/cm)	pH** (std units)	Alkalinity (mg/l as CaCO3)	Hardness (mg/l as CaCO3)		DRP (mg/I as P)		TP (mg/I as P)		Ammonia (mg/l as N)		Nitrate (mg/l as N)		Nitrite (mg/l as N)
WL2	surface	06/07/16	73	6.10	5.5	14.0		0.002		0.020		0.040		0.110		0.002
WL2	surface	07/05/16	76	6.14	9.0	16.0	b	0.002		0.020	b	0.010		0.030		0.003
WL2	surface	08/08/16	77	5.80	10.0	16.0		0.002		0.020	b	0.010		0.050		0.003
WL2	surface	06/06/17	73	5.72	6.7	14.0		0.004		0.030	b	0.010	b	0.020		0.002
WL2	surface	07/17/17	79	6.27	14.0	16.0		0.006		0.020		0.010		0.040		0.002
WL2	surface	08/15/17	76	6.87	14.0	12.0	b	0.002		0.030		0.090		0.180	b	0.002
WL2	surface	06/05/18	77	7.49	20.0	11.9	b	0.002	b	0.010	b	0.010		0.080		0.007
WL2	surface	07/11/18	84	5.53	20.0	15.8		0.006		0.010	b	0.010		0.040	b	0.002
WL2	surface	08/07/18	76	6.31	4.0	18.0		0.002		0.080		0.030		0.060	b	0.002
WL2	surface	06/10/19	66	6.14	11.0	30.0		0.002		٨		0.010		0.080		0.002
WL2	surface	07/24/19	77	5.55	24.0	20.0		0.003		0.030		0.030		0.150		0.003
WL2	surface	08/27/19	75	6.23	11.0	15.0		0.011		0.020		0.020		0.040	b	0.003
WL2	surface	06/15/20	68	5.95	7.0	12.0	b	0.002		0.020		0.020		0.020		0.003
WL2	surface	07/15/20	75	6.64	18.0	15.0	b	0.002		0.030		0.010		0.020		0.004
WL2	surface	08/18/20	65	~~	18.0	14.0	b	0.002		0.030		0.010		0.040		0.004
WL2	surface	06/02/21	68	6.36	14.0	13.0	b	0.002		0.060		0.020		0.040		0.004
WL2	surface	07/06/21	68	6.37	14.0	16.0		0.002		0.020		0.020		0.080		0.003
WL2	surface	08/03/21	69	6.39	14.0	16.0		^		0.020		0.010	b	0.010	b	0.003
WL2	surface	06/01/22	50	6.77	8.0	12.0	b	0.002		0.020	b	0.010		0.080	b	0.003
WL2	surface	07/12/22	47	6.72	12.0	14.0	b	0.002		0.020		0.040		0.040	b	0.003
WL2	surface	08/16/22	79	6.90	19.0	16.0	b	0.002		0.010		0.010		0.040	b	0.003
			Station WL2	Surface Yearly	Mean from June thr	ough August										
	Mean	2016	75	6.01	8.2	15.3		0.002		0.020		0.020		0.063		0.003
	Mean	2017	76	6.29	11.6	14.0		0.004		0.027		0.037		0.080		0.002
	Mean	2018	79	6.44	14.7	15.2		0.003		0.033		0.017		0.060		0.004
	Mean	2019	73	5.97	15.3	21.7		0.005		0.025		0.020		0.090		0.003
	Mean	2020	69	6.30	14.3	13.7	b	0.002		0.027		0.013		0.027		0.004
	Mean	2021	68	6.37	14.0	15.0		0.002		0.033		0.017		0.043		0.003
	Mean	2022	59	6.80	13.0	14.0		0.002		0.017		0.020		0.053		0.003

Lake Water Quality Trend Analysis

Prepared by Aqua Link, Inc.

Project No. 1577-31 Station No. WL1 - Near dam center

Walker Lake

Station No. WL2 - Uplake center

Lake Water Quality Trend Analysis

Prepared by Aqua Link, Inc.

Project No. 1577-31

Walker Lake

Station No. WL1 - Near dam center

Station No. WL2 - Uplake center

			Nitrate + Nitrite		TKN	TIN*	TN*				TSS	Chlorophyll	-a	Pheophytin-a
Station	Depth	Date	(mg/l as N)	(1	mg/I as N)	(mg/l as N)	(mg/l as N)	TN:TP*	TIN:DRP*		(mg/l)	(ug/l)		(ug/l)
WL2	surface	06/07/16	0.112		0.620	0.152	0.732	36.6	76.0		5.0	5.6		10.3
WL2	surface	07/05/16	0.033		0.440	0.043	0.473	23.7	21.5		4.0	12.0		11.0
WL2	surface	08/08/16	0.053		0.350	0.063	0.403	20.2	31.5	b	3.0	11.3		9.2
WL2	surface	06/06/17	0.022		0.480	0.032	0.502	16.7	8.0		5.0	12.3		3.6
WL2	surface	07/17/17	0.042		0.180	0.052	0.222	11.1	8.7		3.0	7.3		0.6
WL2	surface	08/15/17	0.182		0.500	0.272	0.682	22.7	136.0		3.0	16.0		3.4
WL2	surface	06/05/18	0.087	b	0.160	0.097	0.247	24.7	48.5	b	3.0	12.6	b	0.6
WL2	surface	07/11/18	0.042	b	0.160	0.052	0.202	20.2	8.7	b	3.0	b 0.8	b	0.8
WL2	surface	08/07/18	0.062	b	0.160	0.092	0.222	2.8	46.0		3.0	5.2	b	0.6
WL2	surface	06/10/19	0.082		0.180	0.092	0.262	٨	46.0		2.0	5.8	b	0.3
WL2	surface	07/24/19	0.153		0.110	0.183	0.263	8.8	61.0		3.0	16.0		6.0
WL2	surface	08/27/19	0.043		0.150	0.063	0.193	9.7	5.7	b	2.0	13.0		1.4
WL2	surface	06/15/20	0.023		0.220	0.043	0.243	12.2	21.5		4.0	2.4	b	0.6
WL2	surface	07/15/20	0.024	b	0.100	0.034	0.124	4.1	17.0	b	2.0	9.2		0.7
WL2	surface	08/18/20	0.044	b	0.100	0.054	0.144	4.8	27.0	b	2.0	19.0	b	0.5
WL2	surface	06/02/21	0.044	b	0.100	0.064	0.144	2.4	32.0	b	2.0	4.5		1.1
WL2	surface	07/06/21	0.083	b	0.100	0.103	0.183	9.2	51.5		3.0	15.0	b	0.6
WL2	surface	08/03/21	0.013		0.400	0.023	0.413	20.7	^		8.0	9.3		1.7
WL2	surface	06/01/22	0.083		0.440	0.093	0.523	26.2	46.5	b	2.0	6.3		2.3
WL2	surface	07/12/22	0.043	b	0.100	0.083	0.143	7.2	41.5	b	2.0	6.8		3.3
WL2	surface	08/16/22	0.043		0.440	0.053	0.483	48.3	26.5	b	2.0	7.2		3.1
			Station WL2 Surface	ce Ye	arly Mean fro	om June through	August							
	Mean	2016	0.066		0.470	0.086	0.536	26.8	43.0		4.0	9.6		10.2
	Mean	2017	0.082		0.387	0.119	0.469	16.9	50.9		3.7	11.9		2.5
	Mean	2018	0.064	b	0.160	0.080	0.224	15.9	34.4	b	3.0	6.2		0.7
	Mean	2019	0.093		0.147	0.113	0.239	9.2	37.6		2.3	11.6		2.6
	Mean	2020	0.030		0.140	0.044	0.170	7.0	21.8		2.7	10.2		0.6
	Mean	2021	0.047		0.200	0.063	0.247	10.7	41.8		4.3	9.6		1.1
	Mean	2022	0.056		0.327	0.076	0.383	27.2	38.2		2.0	6.8		2.9

Walker Lake	Ð				Lake Water Quality	Trend Analysis			Prepared by A	qua Link, Inc.		
Project No.	1577-31											
Station No.	WL1 - Near da	am center										
Station No.	WL2 - Uplake	center										
			Sp Cond**	pH**	Alkalinity	Hardness		DRP	TP	Ammonia	Nitrate	Nitrite
Station	Depth	Date	(uS/cm)	(std units)	(mg/l as CaCO3)	(mg/l as CaCO3)		(mg/I as P)	(mg/l as P)	(mg/I as N)	(mg/l as N)	(mg/l as N)
WL2	bottom	08/16/22	146	6.22			b	0.002	0.020			
			Station WI 2 F	Rottom Vearly	Mean from June thr	ough August						

Station WL2 Bottom Yearly Mean from June through August										
Mean	2022	146	6.22	b	0.002	0.020				

Walker Lak	e			is	Prepared by	Aqua Link	a, Inc.						
Project No.	1577-31												
Station No. WL1 - Near dam center													
Station No.	WL2 - Uplake	center											
			Nitrate + Nitrite	TKN	TIN*	TN*			TSS	Chlorophyll-a	Pheophytin-a		
Station	Depth	Date	(mg/l as N)	(mg/l as N)	(mg/l as N)	(mg/l as N)	TN:TP*	TIN:DRP*	(mg/l)	(ug/l)	(ug/l)		
-													
WL2	bottom	08/16/22						b	2.0				

WL2	bottom	08/16/22		b	2.0
			Station WL2 Bottom Yearly Mean from June through August		
	Mean	2022		b	2.0

Analytical Lake Water Quality Data

Note(s):	TIN denotes total inorganic nitrogen and is the sum of nitrite, nitrate, and ammonia nitrogen Nitrate + Nitrite is the sum of nitrate and nitrite
	TN denotes total nitrogen and is the sum of total Kjeldahl nitrogen and nitrite and nitrate nitrogen TN:TP denotes the ratio of total nitrogen and total phosphorus TN:DRP denotes the ratio of total inorganic nitrogen and dissolved reactive phosphorus (b) denotes below detection limit, therefore data reported as the detection limit (*) indicates calculated value (**) indicates <i>in-situ</i> field data collected on the study date (also refer to <i>in-situ</i> data) (^) indicates an outlier value, due to sampling and/or laboratory error; not used for calculations. (^) indicates inconsistent values outside of typical ranges

Walker Lake Project No. 1577-31 Station No. WL1 - Near dam center Station No. WL2 - Uplake center Secchi Disk Depth & General Observations

Count

3

		Secchi Depth	
Station	Date	(meters)	Observations
WL1	06/01/22	1.80	Water clear; brownish tint
WL1	07/12/22	1.07	Water has cloudy brownish tint
WL1	08/16/22	1.13	Water clear, brownish tannic tint
< <insert>></insert>			
	Min	1.07	
	Max	1.80	
	Mean	1.33	
	Median	1.13	
	Stds	0.41	
	Std	0.33	
	Count	3	
		0	
0	5.4	Secchi Depth	
Station	Date	(meters)	Observations
WL2	06/01/22	1.86	Water clear; brownish tint
WL2	07/12/22	1.13	Water has cloudy brownish tint
WL2	08/16/22	1.43	Water clear, brownish tannic tint
< <insert>></insert>			
	Min	1.13	
	Max	1.86	
	Mean	1.47	
	Median	1.43	
	Stds	0.37	
	Std	0.30	

Project No. 1577-31

Walker Lake

Station No. WL1 - Near dam center

Station No. WL2 - Uplake center

Secchi Disk Transparency Data:

Station	Date	Secchi Depth (meters)	Secchi Depth (feet)
WL1	06/07/16	1.92	6.30
WL1	07/05/16	1.34	4.40
WL1	08/08/16	1.49	4.90
WL1	06/06/17	1.58	5.20
WL1	07/17/17	1.80	5.90
WL1	08/15/17	1.43	4.70
WL1	06/05/18	1.19	3.90
WL1	07/11/18	1.31	4.30
WL1	08/07/18	1.52	5.00
WL1	06/10/19	1.86	6.10
WL1	07/24/19	1.46	4.80
WL1	08/27/19	1.71	5.60
WL1	06/15/20	1.25	4.10
WL1	07/15/20	1.28	4.20
WL1	08/18/20	1.31	4.30
WL1	06/02/21	1.16	3.80
WL1	07/06/21	1.34	4.40
WL1	08/03/21	1.25	4.10
WL1	06/01/22	1.80	5.90
WL1	07/12/22	1.07	3.50
WL1	08/16/22	1.13	3.70
Mean	2016	1.58	5.20
WL1	2017	1.61	5.27
WL1	2018	1.34	4.40
WL1	2019	1.68	5.50
WL1	2020	1.28	4.20
WL1	2021	1.25	4.10
WL1	2022	1.33	4.37

Project No. 1577-31

Walker Lake

Station No. WL1 - Near dam center

Station No. WL2 - Uplake center

Secchi Disk Transparency Data:

Station	Date	Secchi Depth (meters)	Secchi Depth (feet)
WL2	06/07/16	1.95	6.40
WL2	07/05/16	1.55	5.10
WL2	08/08/16	1.68	5.50
WL2	06/06/17	1.74	5.70
WL2	07/17/17	1.89	6.20
WL2	08/15/17	1.40	4.60
WL2	06/05/18	1.34	4.40
WL2	07/11/18	1.52	5.00
WL2	08/07/18	1.58	5.20
WL2	06/10/19	1.80	5.90
WL2	07/24/19	1.40	4.60
WL2	08/27/19	1.77	5.80
WL2	06/15/20	1.62	5.30
WL2	07/15/20	1.43	4.70
WL2	08/18/20	1.43	4.70
WL2	06/02/21	1.16	3.80
WL2	07/06/21	1.37	4.50
WL2	08/03/21	1.25	4.10
WL2	06/01/22	1.86	6.10
WL2	07/12/22	1.13	3.70
WL2	08/16/22	1.43	4.70
Mean	2016	1.73	5.67
WL2	2017	1.68	5.50
WL2	2018	1.48	4.87
WL2	2019	1.66	5.43
WL2	2020	1.49	4.90
WL2	2021	1.26	4.13
WL2	2022	1.47	4.83

Station No. WL1 - Near dam center Station No. WL2 - Uplake center Prepared by Aqua Link, Inc.

Carlson's Trophic State Index

		Secchi	Chl-a*	TP*		TSI Values		Me	an TSI Value	es
Station	Date	(meters)	(ug/l)	(mg/l as P)	Secchi	Chl-a	TP	Secchi	Chl-a	TP
WL2	06/01/22	1.86	6.3	0.020	51.1	48.6	47.4	54.4	49.3	44.7
	07/12/22	1.13	6.8	0.020	58.3	49.4	47.4			
	08/16/22	1.43	7.2	0.010	54.8	49.9	37.4			
< <insert>></insert>										
	Min	1.13	6.3	0.0	51.1	48.6	37.4			
	Max	1.86	7.2	0.020	58.3	49.9	47.4			
	Mean	1.47	6.8	0.017						
	Median	1.43	6.8	0.020						
	Stds	0.37	0.5	0.006						
	Std	0.30	0.4	0.005						
	Count	3	3	3	3	3	3			

Note(s): (*) indicates data reported for surface (1.0 m)

(^) indicates an outlier value, due to sampling and/or laboratory error; not used for calculations.

TSI Annual Summary:

		Mean TSI Value		
Station	Year	Secchi	Chl-a	TP
WL2	2016	52.1	52.8	47.4
WL2	2017	52.5	54.8	51.5
WL2	2018	54.3	48.5	54.7
WL2	2019	52.7	54.6	50.6
WL2	2020	54.2	53.4	51.5
WL2	2021	56.7	52.8	54.7
WL2	2022	54.4	49.3	44.7

Plankton Identification & Enumeration

Kenneth Wagener, Ph.D.

Algae – Phytoplankton

Sample Collection

Samples are normally received by mail or courier. If collected by K. Wagner, samples are either grab samples collected about 1 ft below the surface or are composite samples from a flexible tube lowered to a depth equal to twice the Secchi transparency or the depth of the thermocline, whichever is least. Samples are collected in straight sided plastic containers with a volume of 125 to 1000 ml. Sample bottles are filled to the shoulder of the bottle (straight sided part is filled, air space left by not filling the neck). Samples are preserved in either gluteraldehyde (0.3 to 0.5% by volume) or Lugol's solution (1 to 2% by volume), depending upon client preference. With the use of gluteraldehyde, samples should froth slightly when shaken. For Lugol's solution, the sample should have a weak tea color. If algae appear dense, a little more preservative (up to about double) may be warranted. Samples are labeled with waterbody name, station, date and type of preservative.

Sample Processing

Preserved samples are allowed to stand undisturbed for at least 3 days and normally for 1 week. Each sample is viewed for visual signs of algal density (amount of material accumulated on the container bottom or floating at the surface). Unless the sample obviously contains visually large amounts of algae, the supernatant is decanted or siphoned from the middle to concentrate the sample by a factor of 2 to 6, depending upon how easy it is to remove supernatant without disturbing settled particles (this is a function of container geometry). The remaining sample is then vigorously shaken for 1 minute and 50 mL of sample is poured into a 50 mL graduated test tube.

Test tubes are clear cylinders with a height to diameter ratio of 5:1, with a conical bottom containing approximately 5 mL. Tubes are labeled to match the original sample bottles. Samples in the tubes are allowed to stand undisturbed for at least 3 days and normally for 1 week, after which the concentration process described for the original sample is repeated. Final concentrate volume is typically about 10 mL, concentrating the sample in the tube by a factor of approximately 5. Final concentration factors are therefore typically on the order of 10 to 30, although samples with high algal density may not be concentrated at all and samples with very low density may be concentrated by factors up to 100.

Sample Examination

The concentrated sample is shaken vigorously for about 1 minute to homogenize the contents, then 0.1 mL is pipetted into a Palmer-Maloney style counting chamber. This circular chamber has a depth of 0.04 cm and a diameter of 1.75 cm. The slide is allowed to stand for 5-15 minutes. The slide is then scanned at 200X power (20X objective and 10X oculars) under phase contrast optics and a list of all encountered algal taxa is constructed. Viewing at 400X is conducted if necessary to identify taxa. Using a standard microscope slide and a separate sample aliquot, it is also possible to view specimens at 1000X under oil immersion if necessary. Identifications are made from a variety of reference books as needed, relying mainly on Wehr and Sheath 2003. Actual counting (see below) is performed at 400X.

Sample Enumeration

Counts of algal cells are made along complete transects across the slide; these transects are called strips. A strip count involves recording the cells of each taxon (usually genus) encountered along the transect. To avoid overcounting, cells partially visible on the left side are counted, while those partially visible along the right side are ignored. If appropriate to the project, natural units, colonies, filaments, or other cell groupings may be counted, but in all cases an average number of cells per algal grouping is obtained to allow calculation of density as cells/mL. Based on cell measurements, cells of each taxon are recorded as small, medium or large specimens of the corresponding taxon. The size categories are genus-specific; a large specimen of one taxon with typically smaller cells may be smaller than a small specimen of another taxon with typically larger cells. At least two strips are counted, after which results from each strip are compared. If the increase in taxa is more than 10% of the

total or the abundance of any two possible dominants (genera comprising more than 20% of the total count) differs by more than 10%, additional strips are counted until the "10% rule" is satisfied.

Calculations

All counts are recorded in a spreadsheet file. A multiplication factor is established as the inverse of the product of the fraction of 1 mL viewed and the sample concentration factor. For example, if one tenth of the slide was viewed, with that slide representing one tenth of a mL, and the sample had been concentrated by a factor of 10, the multiplication factor would be 1/(0.1X0.1X10), or 10. Multiplication factors are typically between 6 and 30. The cell count for each taxon is multiplied by this factor and recorded in a separate portion of the spreadsheet for easy printing, as cells/mL. Cell counts are tallied by genus, ecologically significant groupings within algal divisions (e.g., flagellated greens, filamentous blue-greens), algal division (e.g., blue-greens, greens, diatoms) and as a grand total.

Based on the number of cells of each taxon in each corresponding size category, a biomass estimate is calculated. Each size category for each taxon is assigned a biomass per cell, based on the average cell dimensions for that category and a specific gravity of 1.0. Multiplication of the genus and size specific factor by the number of cells in that taxon and size category yields both a biovolume and biomass estimate. The sum for each genus (three possible size categories) is reported as ug/L. The sum for each ecologically significant grouping, algal division and the grand total are reported as well.

If requested, a conversion to algal standard units (ASU) is also made. The average area (two dimensional) of each cell for each genus and size category is multiplied by the corresponding number of cells and divided by 400 square microns to derive an ASU value for each taxon. The ASUs are summed for each ecologically significant grouping, algal division and as a grand total as well.

The total number of taxa per ecologically significant grouping, algal division and per sample is also reported, simply as a summation of the taxa observed. Shannon-Weiner Diversity (S) is calculated by the appropriate formula based on the number of cells recorded for each taxon and for the biomass of each taxon. Pielou's Evenness (J) is also calculated, based on S divided by the maximum possible S value for the number of taxa observed, yielding a value between 0 and 1. Additional indices can be calculated as warranted.

Quality Control

Approximately one sample in every ten is subjected to re-analysis. Samples for QC checks are chosen randomly from samples available at the time of analysis. Differences of 10-20% are typical for phytoplankton samples counted by the same analyst and considered acceptable for use in evaluating aquatic conditions.

Algae – Periphyton

Sample Collection

Samples are normally received by mail or courier. If collected by K. Wagner, samples are collected by scraping a defined area of natural or artificial substrate. Enough distilled water is added to create a mixture of appropriate density for microscopic analysis of an aliquot of well-mixed sample. Samples are preserved in either gluteraldehyde or Lugol's solution, depending upon client preference, but as algal density is likely to be high, double the amount of preservative used for phytoplankton samples (1% gluteraldehyde, 2-4% Lugols). Container shape is not critical, but small size (125-250 ml) plastic bottles are preferred, as periphyton samples tend to be very concentrated to begin with. Samples are labeled with waterbody name, station, date and type of preservative, plus the area that was sampled in square centimeters.

Sample Processing, Examination and Enumeration

Samples should not require any concentration, but may be diluted by addition of distilled water. If necessary, concentration by settling is performed as described for phytoplankton analysis above. Examination and enumeration follow the phytoplankton analysis protocols above.

Calculations

All counts are recorded in a spreadsheet file. A multiplication factor is established in the same manner as for phytoplankton, except that the factor for converting cell count to cells/mL is then multiplied by the number of mL of sample and divided by the square centimeters of substrate sampled to yield a measure of cells/cm². All other calculations follow the phytoplankton analysis procedures.

Zooplankton

Sample Collection

Samples are normally received by mail or courier. If collected by K. Wagner, samples are concentrates obtained by towing a plankton net with a 53 um mesh size through at least 30 m of water (multiple shorter tows as needed). The net is typically retrieved at an oblique angle after allowing it to settle to within 1 m of the bottom of the lake. Care is taken to avoid tows long enough to cause net clogging. Samples are preserved in either formalin (2%) or gluteraldehyde (2%) or Lugol's solution (strong tea color, usually about 4%), depending upon client preference. Container shape is not critical, but small size (125-250 ml) plastic bottles are preferred, as zooplankton tow samples tend to be very concentrated to begin with. Samples are labeled with waterbody name, station, date and type of preservative, plus the length of the tow and the diameter of the net used.

Sample Processing

Samples are allowed to stand undisturbed for at least 10 minutes and normally for several hours. Each sample is viewed for visual signs of zooplankton density (amount of apparent zooplankton and other particles accumulated on the container bottom). The supernatant is decanted or siphoned until the concentrated sample will fit into a 50 mL graduated test tube. This may require multiple episodes of settling and transfer, depending upon container geometry and the quantity of algae present, to get a zooplankton sample that can be properly viewed at an appropriate concentration. Where considerable algae are present, siphoning is timed to remove as much algae as possible without losing zooplankton; zooplankton settle faster than most algae. Multiple refills with distilled water, with repeat of the settling/siphoning process, are used to clear the sample of algae to the extent necessary to facilitate unobstructed viewing of zooplankton.

Test tubes are clear cylinders with a height to diameter ratio of 5:1, with a conical bottom containing approximately 5 mL. Tubes are labeled to match the original sample bottles. Final concentrate volume is typically 20 to 50 mL, representing 500 to 1000 L of filtered lake water, depending upon net diameter. Final concentration factors are therefore typically on the order of 20,000 to 30,000.

Sample Examination

The concentrated sample is shaken vigorously for about 30 seconds to homogenize the contents, then 1 mL is pipetted into a Sedgewick-Rafter style counting chamber. This rectangular chamber has a depth of 0.1 cm, a length of 5 cm and a width of 2 cm. The slide is then scanned at 40X power (4X objective and 10X oculars) under brightfield optics and a list of all encountered zooplankton taxa is constructed. Viewing at 100X or higher power is conducted as necessary to identify taxa. Identifications are made from a variety of reference books as needed.

Sample Enumeration

Counts of zooplankton individuals are made along complete transects across the slide; these transects are called strips. A strip count involves recording the individuals of each taxon (usually genus) encountered along the transect. To avoid overcounting, individuals partially visible on the top side are counted, while those partially visible along the bottom side are ignored. Based on body length measurements, individuals of each taxon are recorded as small, medium or large specimens of the corresponding taxon. The size categories are genus-specific; a large specimen of a small-bodied taxon may be smaller than a small specimen of a large-bodied taxon. At least two strips are counted, after which results from each strip are compared. If the increase in taxa is more than 10% of the total or the ratio of any two possible dominants (genera comprising more than 20% of the total count) is greater than 10%, additional strips are counted until the "10% rule" is satisfied. The slide is refilled with fresh sample if more than 3 strips are needed.

Calculations

All counts are recorded in a spreadsheet file as individuals/L. A multiplication factor is established by dividing the sample volume in mL by the product of the fraction of 1 mL viewed and the number of liters of water filtered. For example, if half of the slide was viewed, with that slide representing 40 mL of concentrated sample, and the concentrated sample represented 800 liters, the multiplication factor would be 40/(0.5X800), or 0.1. The specimen count for each taxon is multiplied by this factor and recorded in a separate portion of the spreadsheet for easy printing, as individuals/L. Counts are tallied by genus and zooplankton group (e.g., rotifers, copepods, cladocerans, etc.), and as a grand total.

Based on the number of individuals of each taxon in each corresponding size category, a biomass estimate is calculated. Each size category for each taxon is assigned a biomass per individual, based on the average body length for that category and standard regressions for body weight as a function of length. Multiplication of the genus and size specific factor by the number of individuals in that taxon and size category yields a biomass estimate. The sum for each genus (three possible size categories) is reported as ug/L. The sum for each zooplankton group and the grand total are reported as well.

The total number of taxa per zooplankton group and per sample is also reported, simply as a summation of the taxa observed. Shannon-Weiner Diversity (S) is calculated by the appropriate formula based on the number of individuals recorded for each taxon. Pielou's Evenness (J) is also calculated, based on S divided by the maximum possible S value for the number of taxa observed, yielding a value between 0 and 1.

A size distribution is also generated, based on the observed body lengths. Average body length for all zooplankton is reported in mm, as well as the average body length for crustacean zooplankton (primarily copepods and cladocerans).

Quality Control

Approximately one sample in every ten is subjected to re-analysis. Samples for QC checks are chosen randomly from samples available at the time of analysis. Differences of 10-20% are typical for zooplankton samples counted by the same analyst and considered acceptable for use in evaluating aquatic conditions.

PHYTOPLANKTON DENSITY (CELLS/ML)

TAXON	WL2 06/01/22	WL2 07/12/22	WL2 08/16/22
BACILLARIOPHYTA Centric Diatoms			
Aulacoseira	0.0	159.6	0.0
Stephanodiscus	0.0	0.0	0.0
Urosolenia	0.0	0.0	0.0
Araphid Pennate Diatoms			
Asterionella	346.5	0.0	0.0
Fragilaria/related taxa	0.0	0.0	0.0
Synedra	189.0	68.4	0.0
Tabellaria	105.0	4765.2	2268.0
Monoraphid Pennate Diatoms			
Biraphid Pennate Diatoms			
Eunotia	0.0	0.0	0.0
Navicula/related taxa	0.0	0.0	0.0
Nitzschia	0.0	0.0	0.0
CHLOROPHYTA			
Flagellated Chlorophytes			
Chlamydomonas	0.0	0.0	0.0
Eudorina	0.0	0.0	0.0
Coccoid/Colonial Chlorophytes			
Ankistrodesmus	0.0	0.0	0.0
Botryococcus	0.0	0.0	0.0
Closteriopsis	0.0	0.0	0.0
Coelastrum	0.0	0.0	0.0
Crucigenia Distrophosrium	0.0	0.0	0.0
Dictyosphaerium Elakatothrix	0.0 0.0	0.0 0.0	0.0 0.0
Golenkinia	0.0	0.0	0.0
Kirchneriella	0.0	0.0	0.0
Lagerheimia	0.0	0.0	0.0
Oocystis	0.0	0.0	0.0
Pediastrum	42.0	0.0	0.0
Quadrigula	0.0	0.0	0.0
Scenedesmus	0.0	0.0	0.0
Schroederia	0.0	0.0	0.0
Sphaerocystis	0.0	0.0	0.0
Tetraedron	0.0	0.0	0.0
Filamentous Chlorophytes			
Ulothrix	0.0	0.0	0.0
Desmids			
Closterium	126.0	22.8	514.5
Cosmarium	0.0	0.0	0.0
Desmidium	0.0	0.0	0.0
Euastrum	0.0	0.0	0.0
Octacanthium	0.0	0.0	0.0
Staurastrum	10.5	45.6	126.0
Staurodesmus	0.0	0.0	0.0
Teilingia/related taxa	0.0	68.4	0.0

Project No. 1577-31

Prepared by Aqua Link, Inc.

PHYTOPLANKTON DENSITY (CELLS/ML)

Walker Lake

TAXON	WL2 06/01/22	WL2 07/12/22	WL2 08/16/22
CHRYSOPHYTA			
Flagellated Classic Chrysophytes			
Dinobryon	105.0	330.6	0.0
Mallomonas	42.0	0.0	0.0
Synura	0.0	0.0	0.0
Non-Motile Classic Chrysophytes			
Haptophytes			
Tribophytes/Eustigmatophytes			
Centritractus	21.0	22.8	42.0
Pseudostaurastrum	0.0	0.0	0.0
Raphidophytes			
СКҮРТОРНҮТА			
Cryptomonas	31.5	68.4	84.0
Rhodomonas	0.0	0.0	0.0
СУАПОРНУТА			
Unicellular and Colonial Forms			
Aphanocapsa	0.0	0.0	0.0
Microcystis	0.0	0.0	0.0
Woronichinia	0.0	0.0	0.0
Filamentous Nitrogen Fixers			
Aphanizomenon	1260.0	0.0	0.0
Cylindrospermopsis	0.0	0.0	0.0
Dolichospermum	0.0	0.0	420.0
Filamentous Non-Nitrogen Fixers			
Planktothrix	0.0	0.0	2100.0
Pseudanabaena	0.0	0.0	0.0
EUGLENOPHYTA			
Euglena	0.0	0.0	21.0
Phacus	0.0	0.0	0.0
Trachelomonas	0.0	0.0	63.0
Strombomonas	0.0	0.0	0.0
PYRRHOPHYTA			
Ceratium	0.0	0.0	0.0
Peridinium	73.5	91.2	31.5

Prepared by Aqua Link, Inc.

PHYTOPLANKTON DENSITY (CELLS/ML)

DENSITY (CELLS/ML) SUMMARY 640.5 493.2 2268.0 Centric Diatoms 0.0 159.6 0.0 Araphid Pennate Diatoms 640.5 4833.6 2268.0 Monoraphid Pennate Diatoms 0.0 0.0 0.0 Biraphid Pennate Diatoms 0.0 0.0 0.0 Biraphid Pennate Diatoms 0.0 0.0 0.0 CHLOROPHYTA 178.5 136.8 640.5 Flagellated Chorophytes 0.0 0.0 0.0 CCCcccid/Colonial Chlorophytes 0.0 0.0 0.0 Desmids 136.5 136.8 640.5 CHRYSOPHYTA 168.0 353.4 42.0 Flagellated Classic Chrysophytes 0.0 0.0 0.0 Monorhytes 21.0 22.8 42.0 Raphidophytes 21.0 22.8 42.0 Raphidophytes 0.0 0.0 0.0 Unicellutar and Colonial Forms 0.0 0.0 220.0 Unicellutar and Colonial Forms 0.0	TAXON	WL2 06/01/22	WL2 07/12/22	WL2 08/16/22
BACILLARIOPHYTA 640.5 493.2 2268.0 Centric Diatoms 0.0 159.6 0.0 Araphid Pennate Diatoms 0.0 0.0 0.0 Biraphid Pennate Diatoms 0.0 0.0 0.0 Biraphid Pennate Diatoms 0.0 0.0 0.0 CHLOROPHYTA 178.5 136.6 640.5 Flagellated Chiorophytes 0.0 0.0 0.0 Cocceid/Colonial Chiorophytes 0.0 0.0 0.0 Flagellated Classic Chrysophytes 147.0 330.6 0.0 CHRYSOPHYTA 168.0 0.0 0.0 0.0 Haptophytes 21.0 22.8 42.0 Raphidophytes 0.0 0.0 0.0 Raphidophytes 0.0				
Centric Diatoms 0.0 159.6 0.0 Araphid Pennate Diatoms 640.5 4833.6 2268.0 Monoraphid Pennate Diatoms 0.0 0.0 0.0 Biraphid Pennate Diatoms 0.0 0.0 0.0 CHLOROPHYTA 178.5 136.8 640.5 Flageliated Chiorophytes 0.0 0.0 0.0 Coccoid/Colonial Chiorophytes 42.0 0.0 0.0 Desmids 136.5 136.8 640.5 CHRYSOPHYTA 168.0 353.4 42.0 Plageliated Classic Chrysophytes 10.0 0.0 0.0 Non-Motile Classic Chrysophytes 10.0 0.0 0.0 Non-Motile Classic Chrysophytes 0.0 0.0 0.0 Raphidophytes 0.0 0.0 0.0 0.0 CYANOPHYTA 1260.0 0.0 228.0 0.0 0.0 Filamentous Nitrogen Fixers 1260.0 0.0 2100.0 0.0 2100.0 Filamentous Non-Nitrogen Fixers 0.66	· · · · ·	- ·		
Araphid Pennate Diatoms 640.5 4833.6 2268.0 Monoraphid Pennate Diatoms 0.0 0.0 0.0 Biraphid Pennate Diatoms 0.0 0.0 0.0 CACcocid/Colonial Chlorophytes 0.0 0.0 0.0 Cocccid/Colonial Chlorophytes 0.0 0.0 0.0 Desmids 136.5 136.8 640.5 CHRYSOPHYTA 186.0 353.4 42.0 Flagellated Classic Chrysophytes 147.0 330.6 0.0 Non-Motile Classic Chrysophytes 0.0 0.0 0.0 Non-Motile Classic Chrysophytes 0.0 0.0 0.0 Raphidophytes 0.0 0.0 0.0 Raphidophytes 0.0 0.0 0.0 CYANOPHYTA 115668.4 84.0 CYANOPHYTA 2260.0 0.0 220.0 Unicellular and Colonial Forms 0.0 0.0 220.0 Unicellular and Colonial Forms 0.0 0.0 220.0 Fliamentous Niorophitos 0.0				
Monoraphid Pennate Diatoms 0.0 0.0 0.0 Biraphid Pennate Diatoms 0.0 0.0 0.0 0.0 CHLOROPHYTA 178.5 136.8 640.5 Flagellated Chlorophytes 0.0 0.0 0.0 Coccoid/Colonial Chlorophytes 42.0 0.0 0.0 Desmids 136.5 136.8 640.5 CHRYSOPHYTA 168.0 353.4 42.0 Flagellated Classic Chrysophytes 147.0 30.0 0.0 Haptophytes 0.0 0.0 0.0 0.0 Tribophytes/Eustigmatophytes 21.0 22.8 42.0 Raphidophytes 0.0 0.0 0.0 0.0 CYANOPHYTA 1260.0 0.0 220.0 Unicellular and Colonial Forms 0.0 0.0 2100.0 Filamentous Nitrogen Fixers 1260.0 0.0 420.0 2100.0 2100.0 2100.0 2100.0 2100.0 2100.0 2100.0 2100.0 2100.0 2100.0 2100.0 2100.0				
Biraphid Pennate Diatoms 0.0 0.0 0.0 CHLOROPHYTA 178.5 136.8 640.5 Flagellated Chlorophytes 0.0 0.0 0.0 Coccoid/Colonial Chlorophytes 0.0 0.0 0.0 Desmids 136.5 136.8 640.5 CHRYSOPHYTA 168.0 353.4 42.0 Flagellated Classic Chrysophytes 0.0 0.0 0.0 Non-Motile Classic Chrysophytes 0.0 0.0 0.0 Mon-Motile Classic Chrysophytes 0.0 0.0 0.0 Raphidophytes/Eustigmatophytes 21.0 22.8 42.0 Raphidophytes 0.0 0.0 0.0 0.0 CYANOPHYTA 31.5 68.4 84.0 CYANOPHYTA 220.0 Unicellular and Colonial Forms 0.0 0.0 220.0 Unicellular and Colonial Forms 0.0 0.0 220.0 100.0 220.0 100.0 220.0 100.0 220.0 100.0 220.0 100.0 220.0 100.0 20.0	· · · · · · · · ·			
CHLÖROPHYTA 178.5 136.8 640.5 Flagellated Chlorophytes 0.0 0.0 0.0 Coccoid(Colonial Chlorophytes 0.0 0.0 0.0 Plagellated Chlorophytes 0.0 0.0 0.0 Desmids 136.5 136.8 640.5 CHRYSOPHYTA 186.0 353.4 42.0 Flagellated Classic Chrysophytes 0.0 0.0 0.0 Non-Motile Classic Chrysophytes 0.0 0.0 0.0 Haptophytes// 0.0 0.0 0.0 Raphidophytes// 0.0 0.0 0.0 CRYPTOPHYTA 31.5 66.4 84.0 CYANOPHYTA 1260.0 0.0 2520.0 Unicellular and Colonial Forms 0.0 0.0 2100.0 Filamentous Nitrogen Fixers 1260.0 0.0 420.0 Filamentous Nitrogen Fixers 0.0 0.0 2100.0 EVGLENOPHYTA 73.5 91.2 31.5 TOTAL 2352.0 5643.0 <t< th=""><th>-</th><th></th><th></th><th></th></t<>	-			
Flagellated Chlorophytes 0.0 0.0 0.0 Coccoid/Colonial Chlorophytes 0.0 0.0 0.0 Filamentous Chlorophytes 0.0 0.0 0.0 Desmids 136.5 136.8 640.5 CHRYSOPHYTA 168.0 353.4 42.0 Flagellated Classic Chrysophytes 147.0 30.6 0.0 Non-Motile Classic Chrysophytes 0.0 0.0 0.0 Tribophytes/Eustigmatophytes 21.0 22.8 42.0 Raphidophytes 0.0 0.0 0.0 0.0 CYANOPHYTA 1260.0 0.0 2520.0 0.0 242.0 Filamentous Non-Nitrogen Fixers 1260.0 0.0 2400.0 </th <th>•</th> <th></th> <th></th> <th></th>	•			
Coccoid/Colonial Chiorophytes 42.0 0.0 0.0 Filamentous Chlorophytes 0.0 0.0 0.0 0.0 Desmids 136.5 136.8 640.5 CHRYSOPHYTA 168.0 353.4 42.0 Flagellated Classic Chrysophytes 147.0 330.6 0.0 Non-Motile Classic Chrysophytes 0.0 0.0 0.0 Raphidophytes 0.0 0.0 0.0 0.0 Raphidophytes/Eustigmatophytes 21.0 22.8 42.0 Raphidophytes/Eustigmatophytes 0.0 0.0 0.0 0.0 CANOPHYTA 1260.0 0.0 2520.0 Unicellular and Colonial Forms 0.0 0.0 420.0 Filamentous Nitrogen Fixers 1260.0 0.0 2400.0 2100.0				
Filamentous Chlorophytes 0.0 0.0 0.0 0.0 Desmids 136.5 136.8 640.5 CHRYSOPHTA 168.0 333.4 42.0 Flagellated Classic Chrysophytes 147.0 330.6 0.0 Non-Motile Classic Chrysophytes 0.0 0.0 0.0 Haptophytes 0.0 0.0 0.0 Tribophytes/Eustigmatophytes 21.0 22.8 42.0 Raphidophytes 0.0 0.0 0.0 0.0 CRNPTOPHYTA 315 68.4 84.0 CYANOPHYTA 1260.0 0.0 220.0 Unicellular and Colonial Forms 0.0 0.0 0.0 2100.0 2100.0 EUGLENOPHYTA 73.5 91.2 31.5 567.0 567.0 CELL DIVERSITY 0.71 0.31 0.62 0.0 0 CELL DIVERSITY 0.66 0.31 0.62 1 0 CELL LEVENNESS 0 0 0 0 0 0 0	• • • •			
Desmids 136.5 136.8 640.5 CHRYSOPHYTA 166.0 353.4 42.0 Flagellated Classic Chrysophytes 147.0 330.6 0.0 Non-Motile Classic Chrysophytes 0.0 0.0 0.0 Raphidophytes 0.0 0.0 0.0 0.0 Raphidophytes 0.0 0.0 0.0 0.0 Raphidophytes 0.0 0.0 0.0 0.0 CYANOPHYTA 31.5 68.4 84.0 CYANOPHYTA 1260.0 0.0 2520.0 Unicellular and Colonial Forms 0.0 0.0 0.0 2100.0 Filamentous Nitrogen Fixers 1260.0 0.0 420.0 Filamentous Nitrogen Fixers 1260.0 0.0 84.0 PYRRHOPHYTA 73.5 91.2 31.5 TOTAL 2352.0 5643.0 5670.0 CELL DIVERSITY 0.71 0.31 0.62 0 0 0 CHLICROPHYTA 3 3 1 0 0				
CHRYSOPHYTA 168.0 353.4 42.0 Flagellated Classic Chrysophytes 147.0 330.6 0.0 Non-Motile Classic Chrysophytes 0.0 0.0 0.0 Haptophytes 0.0 0.0 0.0 Tribophytes/Eustigmatophytes 21.0 22.8 42.0 Raphidophytes 0.0 0.0 0.0 0.0 CRVPTOPHYTA 31.5 68.4 84.0 CYANOPHYTA 1260.0 0.0 2520.0 Unicellular and Colonial Forms 0.0 0.0 0.0 2100.0 2100.0 Filamentous Non-Nitrogen Fixers 1260.0 0.0 420.0 643.0 5670.0 CELL DIVERSITY 0.71 0.31 0.62 6643.0 5670.0 CELL DIVERSITY 0.71 0.31 0.62 643.0 5670.0 CELL DIVERSITY 0.71 0.31 0.62 670.0 0 0 NUMBER OF TAXA 3 3 1 0 0 0 0 0 0				
Flagellated Classic Chrysophytes 147.0 330.6 0.0 Non-Motile Classic Chrysophytes 0.0 0.0 0.0 Haptophytes 0.0 0.0 0.0 Tribophytes/Eustigmatophytes 21.0 22.8 42.0 Raphidophytes/Eustigmatophytes 0.0 0.0 0.0 CYANOPHYTA 31.5 68.4 84.0 CYANOPHYTA 1260.0 0.0 420.0 Filamentous Non-Nitrogen Fixers 0.0 0.0 2100.0 EUGLENOPHYTA 0.0 0.0 84.0 PYRRHOPHYTA 73.5 91.2 31.5 TOTAL 2352.0 5643.0 5670.0 CELL DIVERSITY 0.71 0.31 0.62 NUMBER OF TAXA 3 1 0 BACILLARIOPHYTA 3 3 1 Centric Diatoms 0 0 0 BARDILLARIOPHYTA 3 3 2 Monoraphid Pennate Diatoms 0 0 0 CHLOROPH				
Non-Motile Classic Chrysophytes 0.0 0.0 0.0 Haptophytes 0.0 0.0 0.0 Tribophytes/Eustigmatophytes 21.0 22.8 42.0 Raphidophytes 0.0 0.0 0.0 Raphidophytes 0.0 0.0 0.0 CYANOPHYTA 31.5 68.4 84.0 CYANOPHYTA 1260.0 0.0 2520.0 Unicellular and Colonial Forms 0.0 0.0 420.0 Filamentous Non-Nitrogen Fixers 1260.0 0.0 420.0 Filamentous Non-Nitrogen Fixers 0.0 0.0 84.0 PYRRHOPHYTA 73.5 91.2 31.5 TOTAL 2352.0 5643.0 5670.0 CELL DIVERSITY 0.71 0.31 0.62 NUMBER OF TAXA 3 3 1 BACILLARIOPHYTA 3 3 2 BACILLARIOPHYTA 3 3 2 Baphid Pennate Diatoms 0 0 0 Ococoid/				
Haptophytes 0.0 0.0 0.0 Tribophytes/Eustigmatophytes 21.0 22.8 42.0 Raphidophytes 0.0 0.0 0.0 CRPTOPHYTA 31.5 68.4 84.0 CYANOPHYTA 1260.0 0.0 2520.0 Unicellular and Colonial Forms 0.0 0.0 420.0 Filamentous Nitrogen Fixers 1260.0 0.0 220.0 EUGLENOPHYTA 0.0 0.0 84.0 PYRRHOPHYTA 0.0 0.0 84.0 PYRRHOPHYTA 73.5 91.2 31.5 TOTAL 2352.0 5643.0 5670.0 CELL DIVERSITY 0.71 0.31 0.62 NUMBER OF TAXA BACILLARIOPHYTA 3 3 1 BACILLARIOPHYTA 3 3 1 0 Cell EVENNESS 0.66 0.31 0.62 NUMBER OF TAXA 3 3 2 1 BACILLARIOPHYTA 3 3 2 1 </th <th></th> <th></th> <th></th> <th></th>				
Tribophytes/Eustigmatophytes 21.0 22.8 42.0 Raphidophytes 0.0 0.0 0.0 CRYPTOPHYTA 31.5 68.4 84.0 CYANOPHYTA 1260.0 0.0 2520.0 Unicellular and Colonial Forms 0.0 0.0 420.0 Filamentous Non-Nitrogen Fixers 1260.0 0.0 420.0 Filamentous Non-Nitrogen Fixers 0.0 0.0 84.0 PYRRHOPHYTA 73.5 91.2 31.5 TOTAL 2352.0 5643.0 5670.0 CELL DIVERSITY 0.71 0.31 0.62 CELL EVENNESS 0.66 0.31 0.62 NUMBER OF TAXA 3 3 1 Gentric Diatoms 0 1 0 Araphid Pennate Diatoms 0 0 0 Biraphid Pennate Diatoms 0 0 0 Briageliated Chiorophytes 0 0 0 Cactric Diatoms 2 3 2 1				
Raphidophytes 0.0 0.0 0.0 CRYPTOPHYTA 31.5 68.4 84.0 CYANOPHYTA 1260.0 0.0 2520.0 Unicellular and Colonial Forms 0.0 0.0 420.0 Filamentous Nitrogen Fixers 1260.0 0.0 420.0 Filamentous Non-Nitrogen Fixers 0.0 0.0 84.0 PYRRHOPHYTA 0.0 0.0 84.0 PYRRHOPHYTA 73.5 91.2 31.5 TOTAL 2352.0 5643.0 5670.0 CELL DIVERSITY 0.71 0.31 0.62 CELL EVENNESS 0.66 0.31 0.62 NUMBER OF TAXA T T 0.31 0.62 NUMBER OF TAXA T T 0 0 BACILLARIOPHYTA 3 3 1 0 CHLOROPHYTA 3 3 2 1 Monoraphid Pennate Diatoms 0 0 0 0 CHLOROPHYTA 3 3				
CRYPTOPHYTA 31.5 68.4 84.0 CYANOPHYTA 1260.0 0.0 2520.0 Unicellular and Colonial Forms 1260.0 0.0 420.0 Filamentous Nitrogen Fixers 1260.0 0.0 420.0 Filamentous Non-Nitrogen Fixers 0.0 0.0 2100.0 EUGLENOPHYTA 0.0 0.0 84.0 PYRRHOPHYTA 73.5 91.2 31.5 TOTAL 2352.0 5643.0 5670.0 CELL DIVERSITY 0.71 0.31 0.62 CELL EVENNESS 0.66 0.31 0.62 NUMBER OF TAXA 3 3 1 BACILLARIOPHYTA 3 3 1 Centric Diatoms 0 1 0 Araphid Pennate Diatoms 3 2 1 Monoraphid Pennate Diatoms 0 0 0 CHAROPHYTA 3 3 2 1 Monoraphid Pennate Diatoms 0 0 0 0				
CYANOPHYTA 1260.0 0.0 2520.0 Unicellular and Colonial Forms 0.0 0.0 0.0 Filamentous Nitrogen Fixers 1260.0 0.0 2100.0 EUGLENOPHYTA 0.0 0.0 2400.0 PYRHOPHYTA 73.5 91.2 31.5 TOTAL 2352.0 5643.0 5670.0 CELL DIVERSITY 0.71 0.31 0.62 CELL EVENNESS 0.66 0.31 0.62 NUMBER OF TAXA 3 3 1 BACILLARIOPHYTA 3 3 1 Monoraphid Pennate Diatoms 0 0 0 Biraphid Pennate Diatoms 0 0 0 GCCocid/Colonial Chlorophytes 0 0 0 Flagellated Chlorophytes 0 0 0 0 GCCocid/Colonial Chlorophytes 1 0 0 0 Flagellated Chlorophytes 0 0 0 0 CHRYSOPHYTA 3 2 1				
Unicellular and Colonial Forms 0.0 0.0 0.0 Filamentous Nitrogen Fixers 1260.0 0.0 420.0 Filamentous Non-Nitrogen Fixers 0.0 0.0 2100.0 EUGLENOPHYTA 0.0 0.0 84.0 PYRRHOPHYTA 73.5 91.2 31.5 TOTAL 2352.0 5643.0 5670.0 CELL DIVERSITY 0.71 0.31 0.62 CELL EVENNESS 0.66 0.31 0.62 NUMBER OF TAXA 3 3 1 BACILLARIOPHYTA 3 3 1 Centric Diatoms 0 1 0 Araphid Pennate Diatoms 0 0 0 Biraphid Pennate Diatoms 0 0 0 ChlcROPHYTA 3 3 2 1 Monoraphid Pennate Diatoms 0 0 0 0 Coccoid/Colonial Chlorophytes 1 0 0 0 0 Desmids 2 3 2 <th></th> <td></td> <td></td> <td></td>				
Filamentous Nitrogen Fixers 1260.0 0.0 420.0 Filamentous Non-Nitrogen Fixers 0.0 0.0 2100.0 EUGLENOPHYTA 0.0 0.0 84.0 PYRRHOPHYTA 73.5 91.2 31.5 TOTAL 2352.0 5643.0 5670.0 CELL DIVERSITY 0.71 0.31 0.62 CELL EVENNESS 0.66 0.31 0.62 NUMBER OF TAXA 3 3 1 BACILLARIOPHYTA 3 3 1 Centric Diatoms 0 1 0 Araphid Pennate Diatoms 0 0 0 Biraphid Pennate Diatoms 0 0 0 Gencoid/Colonial Chlorophytes 0 0 0 Coccoid/Colonial Chlorophytes 1 0 0 Desmids 2 3 2 1 Filagellated Classic Chrysophytes 0 0 0 ChRYSOPHYTA 3 2 1 0 Raphi				
Filamentous Non-Nitrogen Fixers 0.0 0.0 2100.0 EUGLENOPHYTA 0.0 0.0 84.0 PYRRHOPHYTA 73.5 91.2 31.5 TOTAL 2352.0 5643.0 5670.0 CELL DIVERSITY 0.71 0.31 0.62 CELL EVENNESS 0.66 0.31 0.62 NUMBER OF TAXA 3 3 1 BACILLARIOPHYTA 3 3 1 Centric Diatoms 0 1 0 Araphid Pennate Diatoms 0 0 0 Biraphid Pennate Diatoms 0 0 0 CHLOROPHYTA 3 3 2 Flagellated Chlorophytes 0 0 0 Coccoid/Colonial Chlorophytes 1 0 0 Flagellated Classic Chrysophytes 2 1 0 Desmids 2 3 2 1 Flagellated Classic Chrysophytes 0 0 0 Non-Motile Classic Chrysophytes				
EUGLENOPHYTA 0.0 0.0 84.0 PYRRHOPHYTA 73.5 91.2 31.5 TOTAL 2352.0 5643.0 5670.0 CELL DIVERSITY 0.71 0.31 0.62 CELL EVENNESS 0.66 0.31 0.62 NUMBER OF TAXA 3 3 1 BACILLARIOPHYTA 3 3 1 Centric Diatoms 0 1 0 Araphid Pennate Diatoms 3 2 1 Monoraphid Pennate Diatoms 0 0 0 Biaphid Pennate Diatoms 0 0 0 CharphytA 3 3 2 1 Flagellated Chlorophytes 0 0 0 0 Coccoid/Colonial Chlorophytes 1 0 0 0 0 Desmids 2 3 2 1 0 0 0 Desmids 2 1 0 0 0 0 0 0	5			
PYRRHOPHYTA 73.5 91.2 31.5 TOTAL 2352.0 5643.0 5670.0 CELL DIVERSITY 0.71 0.31 0.62 CELL EVENNESS 0.66 0.31 0.62 NUMBER OF TAXA BACILLARIOPHYTA 3 3 1 Centric Diatoms 0 1 0 Araphid Pennate Diatoms 3 2 1 Monoraphid Pennate Diatoms 0 0 0 Biraphid Pennate Diatoms 0 0 0 CHLOROPHYTA 3 3 2 1 Monoraphid Pennate Diatoms 0 0 0 0 Biraphid Pennate Diatoms 0 0 0 0 0 CHLOROPHYTA 3 3 2 1 1 0 0 Flagellated Chlorophytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-			
TOTAL 2352.0 5643.0 5670.0 CELL DIVERSITY CELL EVENNESS 0.71 0.31 0.62 NUMBER OF TAXA BACILLARIOPHYTA 3 3 1 Centric Diatoms 0 1 0 Araphid Pennate Diatoms 3 2 1 Monoraphid Pennate Diatoms 0 0 0 Biraphid Pennate Diatoms 0 0 0 Biraphid Pennate Diatoms 0 0 0 Bragellated Chlorophytes 0 0 0 Coccoid/Colonial Chlorophytes 1 0 0 Flagellated Classic Chrysophytes 2 3 2 CHRYSOPHYTA 3 2 1 0 Desmids 2 3 2 1 Flagellated Classic Chrysophytes 0 0 0 Non-Motile Classic Chrysophytes 0 0 0 Haptophytes 0 0 0 0 CHRYSOPHYTA 1 1 1				
CELL DIVERSITY CELL EVENNESS0.710.310.62NUMBER OF TAXA BACILLARIOPHYTA331Centric Diatoms010Araphid Pennate Diatoms321Monoraphid Pennate Diatoms000Biraphid Pennate Diatoms000Biraphid Pennate Diatoms000Biraphid Pennate Diatoms000CHLOROPHYTA332Flagellated Chlorophytes000Coccoid/Colonial Chlorophytes100Desmids2321Flagellated Classic Chrysophytes000Desmids2100Tribophytes/Eustigmatophytes000ORAPHYTA1111CHRYSOPHYTA102Unicellular and Colonial Forms000Filamentous Nitrogen Fixers101Filamentous Non-Nitrogen Fixers001Filamentous Non-Nitrogen Fixers111Filamentous Non-Nitrogen Fixers001Filamentous Non-Nitrogen Fixers002PYRRHOPHYTA1111				
CELL EVENNESS0.660.310.62NUMBER OF TAXA331BACILLARIOPHYTA331Centric Diatoms010Araphid Pennate Diatoms321Monoraphid Pennate Diatoms000Biraphid Pennate Diatoms000CHLOROPHYTA332Flagellated Chlorophytes000Coccoid/Colonial Chlorophytes000Desmids2321Flagellated Classic Chrysophytes000Desmids2100Plagellated Classic Chrysophytes000Tribophytes/Eustigmatophytes111Raphidophytes0000CRYPTOPHYTA1021Filamentous Nitrogen Fixers101Filamentous Non-Nitrogen Fixers000Filamentous Non-Nitrogen Fixers001Filamentous Non-Nitrogen Fixers001Filamentous Non-Nitrogen Fixers001Filamentous Non-Nitrogen Fixers002PYRRHOPHYTA1111	IUIAL	2352.0	5643.0	5670.0
NUMBER OF TAXABACILLARIOPHYTA331Centric Diatoms010Araphid Pennate Diatoms321Monoraphid Pennate Diatoms000Biraphid Pennate Diatoms000CHLOROPHYTA332Flagellated Chlorophytes000Coccoid/Colonial Chlorophytes000Desmids2321Flagellated Classic Chrysophytes000Desmids2100Desmids2111Raphidophytes0000Desmids1111Flagellated Classic Chrysophytes000Tribophytes/Eustigmatophytes000CRYPTOPHYTA1111CYANOPHYTA102Unicellular and Colonial Forms001Filamentous Non-Nitrogen Fixers101Filamentous Non-Nitrogen Fixers102PYRRHOPHYTA1111	CELL DIVERSITY	0.71	0.31	0.62
BACILLARIOPHYTA 3 3 1 Centric Diatoms 0 1 0 Araphid Pennate Diatoms 3 2 1 Monoraphid Pennate Diatoms 0 0 0 Biraphid Pennate Diatoms 0 0 0 Biraphid Pennate Diatoms 0 0 0 Charact Diatoms 0 0 0 CHLOROPHYTA 3 3 2 Flagellated Chlorophytes 0 0 0 Coccoid/Colonial Chlorophytes 0 0 0 Desmids 2 3 2 1 Flagellated Classic Chrysophytes 0 0 0 Non-Motile Classic Chrysophytes 0 0 0 Non-Motile Classic Chrysophytes 1 1 1 Raphidophytes 0 0 0 CRYPTOPHYTA 1 1 1 Raphidophytes 0 0 0 Unicellular and Colonial Forms 0	CELL EVENNESS	0.66	0.31	0.62
Centric Diatoms010Araphid Pennate Diatoms321Monoraphid Pennate Diatoms000Biraphid Pennate Diatoms000CHLOROPHYTA332Flagellated Chlorophytes000Coccoid/Colonial Chlorophytes100Filamentous Chlorophytes000Desmids2321Flagellated Classic Chrysophytes000Non-Motile Classic Chrysophytes000Haptophytes0000Tribophytes/Eustigmatophytes111Raphidophytes0000CRYPTOPHYTA1021Unicellular and Colonial Forms001Filamentous Nitrogen Fixers101Filamentous Non-Nitrogen Fixers102PYRRHOPHYTA1111	NUMBER OF TAXA			
Araphid Pennate Diatoms321Monoraphid Pennate Diatoms000Biraphid Pennate Diatoms000CHLOROPHYTA332Flagellated Chlorophytes000Coccoid/Colonial Chlorophytes100Filamentous Chlorophytes000Desmids232CHRYSOPHYTA321Flagellated Classic Chrysophytes000Non-Motile Classic Chrysophytes000Haptophytes0000Tribophytes/Eustigmatophytes111Raphidophytes0000CryPTOPHYTA1021Unicellular and Colonial Forms001Filamentous Nitrogen Fixers101Filamentous Non-Nitrogen Fixers002PYRRHOPHYTA1111	BACILLARIOPHYTA	3	3	1
Monoraphid Pennate Diatoms000Biraphid Pennate Diatoms000CHLOROPHYTA332Flagellated Chlorophytes000Coccoid/Colonial Chlorophytes100Filamentous Chlorophytes000Desmids2321Flagellated Classic Chrysophytes000Desmids2100CHRYSOPHYTA321Flagellated Classic Chrysophytes000Non-Motile Classic Chrysophytes000Tribophytes/Eustigmatophytes111Raphidophytes000CrYPTOPHYTA111Raphidophytes000Filamentous Nitrogen Fixers101Filamentous Non-Nitrogen Fixers001EUGLENOPHYTA1111	Centric Diatoms		1	0
Monoraphid Pennate Diatoms 0 0 0 Biraphid Pennate Diatoms 0 0 0 Biraphid Pennate Diatoms 0 0 0 CHLOROPHYTA 3 3 2 Flagellated Chlorophytes 0 0 0 Coccoid/Colonial Chlorophytes 1 0 0 Filamentous Chlorophytes 0 0 0 Desmids 2 3 2 1 CHRYSOPHYTA 3 2 1 0 Piagellated Classic Chrysophytes 0 0 0 0 Non-Motile Classic Chrysophytes 0 0 0 0 Haptophytes 0 0 0 0 0 Tribophytes/Eustigmatophytes 1 1 1 1 1 Raphidophytes 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1	Araphid Pennate Diatoms	3	2	1
Biraphid Pennate Diatoms 0 0 0 CHLOROPHYTA 3 3 2 Flagellated Chlorophytes 0 0 0 Coccoid/Colonial Chlorophytes 1 0 0 Filamentous Chlorophytes 0 0 0 Desmids 2 3 2 CHRYSOPHYTA 3 2 1 Flagellated Classic Chrysophytes 2 1 0 Non-Motile Classic Chrysophytes 0 0 0 Non-Motile Classic Chrysophytes 0 0 0 Haptophytes 0 0 0 0 Tribophytes/Eustigmatophytes 1 1 1 1 Raphidophytes 0 0 0 0 CYANOPHYTA 1 1 1 1 Unicellular and Colonial Forms 0 0 0 Filamentous Nitrogen Fixers 1 0 1 1 Filamentous Non-Nitrogen Fixers 0 0	•	0	0	0
Flagellated Chlorophytes 0 0 0 Coccoid/Colonial Chlorophytes 1 0 0 Filamentous Chlorophytes 0 0 0 Desmids 2 3 2 CHRYSOPHYTA 3 2 1 Flagellated Classic Chrysophytes 2 1 0 Non-Motile Classic Chrysophytes 0 0 0 Haptophytes 0 0 0 0 Tribophytes/Eustigmatophytes 1 1 1 1 Raphidophytes 0 0 0 0 CRYPTOPHYTA 1 1 1 1 CYANOPHYTA 1 0 2 0 Unicellular and Colonial Forms 0 0 0 Filamentous Nitrogen Fixers 1 0 1 1 EUGLENOPHYTA 0 0 2 2 PYRRHOPHYTA 1 1 1 1	•	0	0	0
Coccoid/Colonial Chlorophytes 1 0 0 Filamentous Chlorophytes 0 0 0 Desmids 2 3 2 CHRYSOPHYTA 3 2 1 Flagellated Classic Chrysophytes 2 1 0 Non-Motile Classic Chrysophytes 0 0 0 Haptophytes 0 0 0 0 Tribophytes/Eustigmatophytes 1 1 1 1 Raphidophytes 0 0 0 0 0 CYANOPHYTA 1 1 1 1 1 Unicellular and Colonial Forms 0 0 0 1 Filamentous Nitrogen Fixers 1 0 1 1 Filamentous Non-Nitrogen Fixers 0 0 1 1 EUGLENOPHYTA 0 0 2 2 PYRRHOPHYTA 1 1 1 1	CHLOROPHYTA	3	3	2
Coccoid/Colonial Chlorophytes 1 0 0 Filamentous Chlorophytes 0 0 0 Desmids 2 3 2 CHRYSOPHYTA 3 2 1 Flagellated Classic Chrysophytes 2 1 0 Non-Motile Classic Chrysophytes 0 0 0 Haptophytes 0 0 0 0 Tribophytes/Eustigmatophytes 1 1 1 1 Raphidophytes 0 0 0 0 0 CYANOPHYTA 1 1 1 1 1 Unicellular and Colonial Forms 0 0 0 1 Filamentous Nitrogen Fixers 1 0 1 1 Filamentous Non-Nitrogen Fixers 0 0 1 1 EUGLENOPHYTA 0 0 2 2 PYRRHOPHYTA 1 1 1 1	Flagellated Chlorophytes	0	0	0
Desmids 2 3 2 CHRYSOPHYTA 3 2 1 Flagellated Classic Chrysophytes 2 1 0 Non-Motile Classic Chrysophytes 0 0 0 Haptophytes 0 0 0 Tribophytes/Eustigmatophytes 1 1 1 Raphidophytes 0 0 0 CRYPTOPHYTA 1 1 1 CYANOPHYTA 1 0 2 Unicellular and Colonial Forms 0 0 1 Filamentous Nitrogen Fixers 1 0 1 Filamentous Non-Nitrogen Fixers 0 0 1 EUGLENOPHYTA 0 0 2 PYRRHOPHYTA 1 1 1 1		1	0	0
CHRYSOPHYTA 3 2 1 Flagellated Classic Chrysophytes 2 1 0 Non-Motile Classic Chrysophytes 0 0 0 Haptophytes 0 0 0 Tribophytes/Eustigmatophytes 1 1 1 Raphidophytes 0 0 0 0 CRYPTOPHYTA 1 1 1 1 CYANOPHYTA 1 0 2 0 0 0 0 Unicellular and Colonial Forms 0 0 1 1 1 1 1 Filamentous Nitrogen Fixers 1 0 1 <th>Filamentous Chlorophytes</th> <td>0</td> <td>0</td> <td>0</td>	Filamentous Chlorophytes	0	0	0
Flagellated Classic Chrysophytes210Non-Motile Classic Chrysophytes000Haptophytes000Tribophytes/Eustigmatophytes111Raphidophytes000CRYPTOPHYTA111CYANOPHYTA102Unicellular and Colonial Forms000Filamentous Nitrogen Fixers101Filamentous Non-Nitrogen Fixers002PYRRHOPHYTA1111	Desmids	2	3	2
Non-Motile Classic Chrysophytes00Haptophytes00Tribophytes/Eustigmatophytes11Raphidophytes00CRYPTOPHYTA11CYANOPHYTA10Unicellular and Colonial Forms00Filamentous Nitrogen Fixers10EUGLENOPHYTA00PYRRHOPHYTA11	CHRYSOPHYTA	3	2	1
Haptophytes 0 0 0 Tribophytes/Eustigmatophytes 1 1 1 Raphidophytes 0 0 0 CRYPTOPHYTA 1 1 1 CYANOPHYTA 1 0 2 Unicellular and Colonial Forms 0 0 0 Filamentous Nitrogen Fixers 1 0 1 FullenoPhytA 0 0 1 EUGLENOPHYTA 1 1 1	Flagellated Classic Chrysophytes	2	1	0
Tribophytes/Eustigmatophytes111Raphidophytes000CRYPTOPHYTA111CYANOPHYTA102Unicellular and Colonial Forms000Filamentous Nitrogen Fixers101Filamentous Non-Nitrogen Fixers001EUGLENOPHYTA002PYRRHOPHYTA111	Non-Motile Classic Chrysophytes	0	0	0
Raphidophytes000CRYPTOPHYTA111CYANOPHYTA102Unicellular and Colonial Forms000Filamentous Nitrogen Fixers101Filamentous Non-Nitrogen Fixers001EUGLENOPHYTA002PYRRHOPHYTA111	Haptophytes	0	0	0
CRYPTOPHYTA111CYANOPHYTA102Unicellular and Colonial Forms00Filamentous Nitrogen Fixers101Filamentous Non-Nitrogen Fixers001EUGLENOPHYTA002PYRRHOPHYTA111	Tribophytes/Eustigmatophytes	1	1	1
CYANOPHYTA102Unicellular and Colonial Forms000Filamentous Nitrogen Fixers101Filamentous Non-Nitrogen Fixers001EUGLENOPHYTA002PYRRHOPHYTA111	Raphidophytes	0	0	0
Unicellular and Colonial Forms000Filamentous Nitrogen Fixers101Filamentous Non-Nitrogen Fixers001EUGLENOPHYTA002PYRRHOPHYTA111	CRYPTOPHYTA	1	1	1
Filamentous Nitrogen Fixers101Filamentous Non-Nitrogen Fixers001EUGLENOPHYTA002PYRRHOPHYTA111	CYANOPHYTA	1	0	2
Filamentous Non-Nitrogen Fixers001EUGLENOPHYTA002PYRRHOPHYTA111	Unicellular and Colonial Forms	0	0	0
EUGLENOPHYTA002PYRRHOPHYTA111	Filamentous Nitrogen Fixers		0	1
PYRRHOPHYTA 1 1 1		1	0	
	Filamentous Non-Nitrogen Fixers			
TOTAL 12 10 10	5	0	0	1
	EUGLENOPHYTA	0 0	0 0	1 2

PHYTOPLANKTON BIOMASS (UG/L)

TAXON	WL2 06/01/22	WL2 07/12/22	WL2 08/16/22
BACILLARIOPHYTA			
Centric Diatoms			
Aulacoseira	0.0	47.9	0.0
Stephanodiscus	0.0	0.0	0.0
Urosolenia	0.0	0.0	0.0
Araphid Pennate Diatoms			
Asterionella	69.3	0.0	0.0
Fragilaria/related taxa	0.0	0.0	0.0
Synedra	151.2	218.9	0.0
Tabellaria	84.0	3812.2	1814.4
Monoraphid Pennate Diatoms			
Biraphid Pennate Diatoms			
Eunotia	0.0	0.0	0.0
Navicula/related taxa	0.0	0.0	0.0
Nitzschia	0.0	0.0	0.0
CHLOROPHYTA Flagellated Chlorophytes			
Chlamydomonas	0.0	0.0	0.0
Eudorina	0.0	0.0	0.0
Coccoid/Colonial Chlorophytes			
Ankistrodesmus	0.0	0.0	0.0
Botryococcus	0.0	0.0	0.0
Closteriopsis	0.0	0.0	0.0
Coelastrum	0.0	0.0	0.0
Crucigenia	0.0	0.0	0.0
Dictyosphaerium	0.0	0.0	0.0
Elakatothrix	0.0	0.0	0.0
Golenkinia	0.0	0.0	0.0
Kirchneriella	0.0	0.0	0.0
Lagerheimia	0.0	0.0	0.0
Oocystis De die date was	0.0	0.0	0.0
Pediastrum	8.4	0.0	0.0
Quadrigula Scenedesmus	0.0 0.0	0.0 0.0	0.0 0.0
Schroederia	0.0	0.0	0.0
Sphaerocystis	0.0	0.0	0.0
Tetraedron	0.0	0.0	0.0
Filamentous Chlorophytes			
Ulothrix	0.0	0.0	0.0
Desmids			
Closterium	504.0	91.2	2058.0
Cosmarium	0.0	0.0	0.0
Desmidium	0.0	0.0	0.0
Euastrum	0.0	0.0	0.0
Octacanthium	0.0	0.0	0.0
Staurastrum	8.4	36.5	100.8
Staurodesmus	0.0	0.0	0.0
Teilingia/related taxa	0.0	136.8	0.0

Walker Lake Project No. 1557-31

PHYTOPLANKTON BIOMASS (UG/L)

TAXON	WL2 06/01/22	WL2 07/12/22	WL2 08/16/22
CHRYSOPHYTA Flagellated Classic Chrysophytes			
Dinobryon	315.0	991.8	0.0
Mallomonas	21.0	0.0	0.0
Synura	0.0	0.0	0.0
Non-Motile Classic Chrysophytes			
Haptophytes			
Tribophytes/Eustigmatophytes			
Centritractus	4.7	5.1	11.0
Pseudostaurastrum	0.0	0.0	0.0
Raphidophytes			
CRYPTOPHYTA			
Cryptomonas	21.0	180.1	890.4
Rhodomonas	0.0	0.0	0.0
СҮАЛОРНҮТА			
Unicellular and Colonial Forms			
Aphanocapsa	0.0	0.0	0.0
Microcystis Woronichinia	0.0	0.0	0.0
woromenima	0.0	0.0	0.0
Filamentous Nitrogen Fixers			
Aphanizomenon	163.8	0.0	0.0
Cylindrospermopsis	0.0	0.0	0.0
Dolichospermum	0.0	0.0	84.0
Filamentous Non-Nitrogen Fixers			
Planktothrix	0.0	0.0	21.0
Pseudanabaena	0.0	0.0	0.0
EUGLENOPHYTA			
Euglena	0.0	0.0	10.5
Phacus	0.0	0.0	0.0
Trachelomonas	0.0	0.0	63.0
Strombomonas	0.0	0.0	0.0
PYRRHOPHYTA			
Ceratium	0.0	0.0	0.0
Peridinium	154.4	1658.7	967.1

Prepared by Aqua Link, Inc.

PHYTOPLANKTON BIOMASS (UG/L)

TAXON	WL2 06/01/22	WL2 07/12/22	WL2 08/16/22
BIOMASS (UG/ML) SUMMARY			
BACILLARIOPHYTA	304.5	4078.9	1814.4
Centric Diatoms	0.0	47.9	0.0
Araphid Pennate Diatoms	304.5	4031.0	1814.4
Monoraphid Pennate Diatoms	0.0	0.0	0.0
Biraphid Pennate Diatoms	0.0	0.0	0.0
CHLOROPHYTA	520.8	264.5	2158.8
Flagellated Chlorophytes	0.0	0.0	0.0
Coccoid/Colonial Chlorophytes	8.4	0.0	0.0
Filamentous Chlorophytes	0.0	0.0	0.0
Desmids	512.4	264.5	2158.8
CHRYSOPHYTA	340.7	996.9	11.0
Flagellated Classic Chrysophytes	336.0	991.8	0.0
Non-Motile Classic Chrysophytes	0.0	0.0	0.0
Haptophytes	0.0	0.0	0.0
Tribophytes/Eustigmatophytes	4.7	5.1	11.0
Raphidophytes	0.0	0.0	0.0
CRYPTOPHYTA	21.0	180.1	890.4
CYANOPHYTA	163.8	0.0	105.0
Unicellular and Colonial Forms	0.0	0.0	0.0
Filamentous Nitrogen Fixers	163.8	0.0	84.0
Filamentous Non-Nitrogen Fixers	0.0	0.0	21.0
EUGLENOPHYTA	0.0	0.0	73.5
PYRRHOPHYTA	154.4	1658.7	967.1
TOTAL	1505.2	7179.2	6020.2
BIOMASS DIVERSITY	0.82	0.58	0.66
BIOMASS EVENNESS	0.76	0.58	0.66

	06/01/22	07/12/22	08/16/22
BIOMASS (UG/ML) SUMMARY			
BACILLARIOPHYTA	305	4079	1814
CHLOROPHYTA	521	264	2159
CHRYSOPHYTA	341	997	11
CRYPTOPHYTA	21	180	890
CYANOPHYTA	164	0	105
EUGLENOPHYTA	0	0	74
PYRRHOPHYTA	154	1659	967

Prepared by Aqua Link, Inc.

Phytoplankton Data

Station	Date	Total Density (cells/ml)	Total Biomass (ug/L)	Cyanobacteria Density (cells/ml)	Cyanobacteria Biomass (ug/L)
olution	Duit	(cono,m)	(49/2)	(benorm)	((()))
WL2	06/07/16	2526.5	1038.5	1240.0	12.4
WL2	07/05/16	22351.0	3569.7	19530.0	725.4
WL2	08/08/16	22940.0	1932.9	21390.0	302.3
WL2	06/06/17	6251.0	12602.7	760.0	79.8
WL2	07/17/17	6555.0	3589.1	1900.0	110.2
WL2	08/15/17	7999.0	5289.6	2850.0	342.0
WL2	06/05/18	18,169.2	7180.1	4,635.0	479.0
WL2	07/11/18	29,854.9	8387.3	26,200.0	1048.0
WL2	08/07/18	176,666.6	7743.4	175,540.0	6314.2
WL2	06/10/19	1305.4	616.1	549.0	109.8
WL2	07/24/19	8721.0	4974.8	2430.0	126.9
WL2	08/27/19	52312.5	1833.3	51165.0	819.5
WL2	06/15/20	3450.6	4736.3	810.0	8.1
WL2	07/15/20	15588.0	5104.2	13200.0	132.0
WL2	08/18/20	19522.8	13823.7	14718.0	1279.7
WL2	06/02/21	5335.2	3743.8	2280.0	22.8
WL2	07/06/21	7113.6	3567.1	2280.0	22.8
WL2	08/03/21	9199.8	4299.5	4788.0	91.2
WL2	06/01/22	2352.0	1505.2	1260.0	163.8
WL2	07/12/22	5643.0	7179.2	0.0	0.0
WL2	08/16/22	5670.0	6020.2	2520.0	105.0
< <insert>></insert>					

Prepared by Aqua Link, Inc.

Phytoplankton Data

Station	Date	Total Density (cells/ml)	Total Biomass (ug/L)	Cyanobacteria Density (cells/ml)	Cyanobacteria Biomas (ug/L)
204.0		0500 F	4000 5	4040.0	40.4
2016	Min	2526.5	1038.5	1240.0	12.4
	Max	22940.0	3569.7	21390.0	725.4
	Mean	15939.2	2180.3	14053.3	346.7
	Median	22351.0	1932.9	19530.0	302.3
	Count	3.0	3.0	3.0	3.0
2017	Min	6251.0	3589.1	760.0	79.8
	Max	7999.0	12602.7	2850.0	342.0
	Mean	6935.0	7160.5	1836.7	177.3
	Median	6555.0	5289.6	1900.0	110.2
	Count	3.0	3.0	3.0	3.0
2018	Min	18169.2	7180.1	4635.0	479.0
2010	Max	176666.6	8387.3	175540.0	6314.2
	Mean	74896.9	7770.3	68791.7	2613.7
	Median	29854.9	7743.4	26200.0	1048.0
	Count	3.0	3.0	3.0	3.0
2019	Min	1305.4	616.1	549.0	109.8
2019					
	Max	52312.5	4974.8	51165.0	819.5
	Mean	20779.6	2474.7	18048.0	352.1
	Median	8721.0	1833.3	2430.0	126.9
	Count	3.0	3.0	3.0	3.0
2020	Min	3450.6	4736.3	810.0	8.1
	Max	19522.8	13823.7	14718.0	1279.7
	Mean	12853.8	7888.1	9576.0	473.3
	Median	15588.0	5104.2	13200.0	132.0
	Count	3.0	3.0	3.0	3.0
2021	Min	5335.2	3567.1	2280.0	22.8
	Max	9199.8	4299.5	4788.0	91.2
	Mean	7216.2	3870.1	3116.0	45.6
	Median	12733.3	3743.8	2280.0	22.8
	Count	3.0	3.0	3.0	3.0
2022	Min	2352.0	1505.2	0.0	0.0
	Max	5670.0	7179.2	2520.0	163.8
	Mean	4555.0	4901.5	1260.0	89.6
	Median	5643.0	6020.2	1260.0	105.0
	Count	3.0	3.0	3.0	3.0
Annual					
Mean	2016	15939.2	2180.3	14053.3	346.7
	2017	6935.0	7160.5	1836.7	177.3
	2018	74896.9	7770.3	68791.7	2613.7
	2019	20779.6	2474.7	18048.0	352.1
	2020	12853.8	7888.1	9576.0	473.3
	2021	7216.2	3870.1	3116.0	45.6
	2022	4555.0	4901.5	1260.0	89.6

ZOOPLANKTON DENSITY (#/L)

TAXON	WL2 06/01/22	WL2 07/12/22	WL2 08/16/22
PROTOZOA			
Ciliophora	0.0	0.0	0.0
Mastigophora	0.0	0.0	0.0
Sarcodina	0.0	0.0	0.0
ROTIFERA			
Anuraeopsis	0.0	0.0	1.2
Asplanchna	1.2	0.0	1.5
Conochilus	0.0	10.2	7.8
Filinia	0.0	0.0	1.2
Hexarthra	0.3	0.0	0.0
Kellicottia	2.4	0.0	0.0
Keratella	31.2	1.5	33.0
Polyarthra	51.6	7.8	13.5
Trichocerca	4.2	0.6	0.0
COPEPODA			
Copepoda-Cyclopoida			
Cyclops	1.2	0.3	0.3
Mesocyclops	0.3	0.6	0.3
Copepoda-Calanoida			
Other Copepoda-Nauplii	1.5	14.4	6.0
CLADOCERA			
Bosmina	2.4	1.5	8.4
Ceriodaphnia	0.0	1.8	0.0

OTHER ZOOPLANKTON

ZOOPLANKTON DENSITY (#/L)

TAXON	WL2 06/01/22	WL2 07/12/22	WL2 08/16/22
SUMMARY STATISTICS			
ZOOPLANKTON DENSITY (#/L)			
PROTOZOA	0.0	0.0	0.0
ROTIFERA	90.9	20.1	58.2
COPEPODA	3.0	15.3	6.6
CLADOCERA	2.4	3.3	8.4
OTHER ZOOPLANKTON	0.0	0.0	0.0
TOTAL ZOOPLANKTON	96.3	38.7	73.2
TAXONOMIC RICHNESS			
PROTOZOA	0	0	0
ROTIFERA	6	4	6
COPEPODA	3	3	3
CLADOCERA	1	2	1
OTHER ZOOPLANKTON	0	0	0
TOTAL ZOOPLANKTON	10	9	10
S-W DIVERSITY INDEX	0.53	0.70	0.70
EVENNESS INDEX	0.53	0.73	0.70
MEAN LENGTH (mm): ALL FORMS MEAN LENGTH: CRUSTACEANS	0.13 0.40	0.21 0.33	0.15 0.31

ZOOPLANKTON BIOMASS (UG/L)

TAYON	WL2	WL2	WL2
TAXON	06/01/22	07/12/22	08/16/22
PROTOZOA			
Ciliophora	0.0	0.0	0.0
Mastigophora	0.0	0.0	0.0
Sarcodina	0.0	0.0	0.0
ROTIFERA			
Anuraeopsis	0.0	0.0	0.0
Asplanchna	2.1	0.0	3.0
Conochilus	0.0	0.4	0.3
Filinia	0.0	0.0	0.0
Hexarthra	0.0	0.0	0.0
Kellicottia	0.0	0.0	0.0
Keratella	2.8	0.1	3.0
Polyarthra	6.2	0.7	1.2
Trichocerca	0.7	0.0	0.0
COPEPODA			
Copepoda-Cyclopoida			
Cyclops	2.9	0.7	0.7
Mesocyclops	0.4	0.8	0.4
Copepoda-Calanoida			••••
Other Copepoda-Nauplii	4.0	38.2	15.9
CLADOCERA			
Bosmina	2.4	1.5	8.2
Ceriodaphnia	0.0	4.7	0.0
	0.0		0.0

OTHER ZOOPLANKTON

ZOOPLANKTON BIOMASS (UG/L)

	WL2	WL2	WL2
TAXON	06/01/22	07/12/22	08/16/22
SUMMARY STATISTICS			
ZOOPLANKTON BIOMASS (UG/L)			
PROTOZOA	0.0	0.0	0.0
ROTIFERA	11.9	1.3	7.6
COPEPODA	7.3	39.6	17.0
CLADOCERA	2.4	6.2	8.2
OTHER ZOOPLANKTON	0.0	0.0	0.0
TOTAL ZOOPLANKTON	21.5	47.1	32.9

Zooplankton Data - Station WL2 - Walker Lake Prepared by Aqua Link, Inc.

		Total Density					
Date	Station	(cells/L)	Protozoa	Rotifera	Copepoda	Cladoceran	Other
07/07/10	14/1 0						
07/05/16	WL2	80.8	0.0	44.9	32.3	3.4	0.1
08/08/16	WL2	182.7	0.0	144.9	20.2	17.6	0.0
06/06/17	WL2	132.0	0.0	88.3	7.7	36.0	0.0
07/17/17	WL2	118.9	0.0	63.7	37.2	17.7	0.3
08/15/17	WL2	51.3	0.0	28.5	17.9	4.9	0.0
06/05/18	WL2	48.9	0.0	41.6	6.5	0.8	0.0
07/11/18	WL2	60.9	0.0	58.0	2.1	0.8	0.1
08/07/18	WL2	53.1	0.0	44.7	7.3	1.0	0.0
06/10/19	WL2	179.7	0.0	171.7	6.1	1.9	0.0
07/24/19	WL2	53.5	0.0	36.0	15.4	2.2	0.0
08/27/19	WL2	71.1	0.0	42.7	25.3	3.1	0.0
06/15/20	WL2	78.6	0.0	60.3	16.6	1.6	0.1
07/15/20	WL2	85.8	0.0	57.6	25.5	2.6	0.0
08/18/20	WL2	55.4	0.0	36.8	16.0	2.6	0.0
06/02/21	WL2	112.3	5.4	95.6	7.6	3.8	0.0
07/06/21	WL2	36.5	0.0	19.4	14.9	2.2	0.0
08/03/21	WL2	58.3	0.0	48.9	7.3	2.2	0.0
06/01/22	WL2	96.3	0.0	90.9	3.0	2.4	0.0
07/12/22	WL2	38.7	0.0	20.1	15.3	3.3	0.0
08/16/22	WL2	73.2	0.0	58.2	6.6	8.4	0.0

Zooplankton Data - Station WL2 - Walker Lake Prepared by Aqua Link, Inc.

		Total Density					
Date	Station	(cells/L)	Protozoa	Rotifera	Copepoda	Cladoceran	Other
2016	Min.	80.8	0.0	44.9	20.2	3.4	0.0
	Max	182.7	0.0	144.9	32.3	17.6	0.1
	Mean	131.8	0.0	94.9	26.3	10.5	0.1
	Count	2	2	2	2	2	2
2017	Min.	51.3	0.0	28.5	7.7	4.9	0.0
2017	Max	132.0	0.0	88.3	37.2	36.0	0.3
	Mean	100.7	0.0	60.2	20.9	19.5	0.0
	Count	3	3	3	3	3	3
	ooun	5	5	5	5	5	5
2018	Min.	48.9	0.0	41.6	2.1	0.8	0.0
	Max	60.9	0.0	58.0	7.3	1.0	0.1
	Mean	54.3	0.0	48.1	5.3	0.9	0.0
	Count	3	3	3	3	3	3
2019	Min.	53.5	0.0	36.0	6.1	1.9	0.0
	Max	179.7	0.0	171.7	25.3	3.1	0.0
	Mean	101.4	0.0	83.5	15.6	2.4	0.0
	Count	3	3	3	3	3	3
2020	Min.	55.4	0.0	36.8	16.0	1.6	0.0
	Max	85.8	0.0	60.3	25.5	2.6	0.1
	Mean	73.3	0.0	51.6	19.4	2.3	0.0
	Count	3	3	3	3	3	3
2021	Min.	36.5	0.0	19.4	7.3	2.2	0.0
	Max	112.3	5.4	95.6	14.9	3.8	0.0
	Mean	69.0	1.8	54.6	9.9	2.7	0.0
	Count	3	3	3	3	3	3
2022	Min.	38.7	0.0	20.1	3.0	2.4	0.0
	Max	96.3	0.0	90.9	15.3	8.4	0.0
	Mean	69.4	0.0	56.4	8.3	4.7	0.0
	Count	3	3	3	3	3	3
		Total Density					
		(cells/L)	Protozoa	Rotifera	Copepoda	Cladoceran	Other
Annual	2016	131.8	0.0	94.9	26.3	10.5	0.1
Mean WL2	2017	100.7	0.0	60.2	20.9	19.5	0.1
	2018	54.3	0.0	48.1	5.3	0.9	0.0
	2019	101.4	0.0	83.5	15.6	2.4	0.0
	2020	73.3	0.0	51.6	19.4	2.3	0.0
	2021	69.0	1.8	54.6	9.9	2.7	0.0
	2022	69.4	0.0	56.4	8.3	4.7	0.0

Zooplankton Data - Station WL2 - Walker Lake Prepared by Aqua Link, Inc.

		Total Biomass					
Date	Station	(ug/L)	Protozoa	Rotifera	Copepoda	Cladoceran	Other
07/07/10	14/1 0						
07/05/16	WL2	145.7	0.0	7.1	67.6	8.1	63.0
08/08/16	WL2	120.3	0.0	22.9	56.4	20.0	21.0
06/06/17	WL2	67.4	0.0	8.2	21.1	38.1	0.0
07/17/17	WL2	257.8	0.0	8.3	74.1	27.9	147.5
08/15/17	WL2	56.9	0.0	2.9	45.9	8.1	0.0
06/05/18	WL2	27.2	0.0	3.9	16.8	0.9	5.6
07/11/18	WL2	41.6	0.0	7.4	5.0	0.8	28.3
08/07/18	WL2	41.1	0.0	5.3	18.3	1.0	16.5
06/10/19	WL2	29.9	0.0	8.8	13.6	3.1	4.4
07/24/19	WL2	42.6	0.0	4.1	29.9	3.0	5.5
08/27/19	WL2	68.3	0.0	2.3	59.3	5.2	1.7
06/15/20	WL2	80.2	0.0	5.1	47.2	2.0	26.0
07/15/20	WL2	96.7	0.0	5.8	65.8	3.1	22.0
08/18/20	WL2	63.3	0.0	2.3	38.1	2.9	20.0
06/02/21	WL2	32.6	0.5	9.0	18.4	4.6	0.0
07/06/21	WL2	56.7	0.0	1.8	37.5	3.9	13.5
08/03/21	WL2	29.2	0.0	9.3	17.4	2.6	0.0
06/01/22	WL2	21.5	0.0	11.9	7.3	2.4	0.0
07/12/22	WL2	47.1	0.0	1.3	39.6	6.2	0.0
08/16/22	WL2	32.9	0.0	7.6	17.0	8.2	0.0

Zooplankton Data - Station WL2 - Walker Lake Prepared by Aqua Link, Inc.

		Total Biomass					
Date	Station	(ug/L)	Protozoa	Rotifera	Copepoda	Cladoceran	Other
2016	Min.	120.3	0.0	7.1	56.4	8.1	21.0
	Max	145.7	0.0	22.9	67.6	20.0	63.0
	Mean	133.0	0.0	15.0	62.0	14.0	42.0
	Count	2	2	2	2	2	2
2017	Min.	56.9	0.0	2.9	21.1	8.1	0.0
	Max	257.8	0.0	8.3	74.1	38.1	147.5
	Mean	127.4	0.0	6.5	47.0	24.7	49.2
	Count	3	3	3	3	3	3
2018	Min.	27.2	0.0	3.9	5.0	0.8	5.6
2010	Max	41.6	0.0	7.4	18.3	1.0	28.3
	Mean	36.6	0.0	5.5	13.4	0.9	16.8
	Count	3	3	3	3	3	3
2019	Min.	29.9	0.0	2.3	13.6	3.0	1.7
	Max	68.3	0.0	8.8	59.3	5.2	5.5
	Mean	46.9	0.0	5.1	34.3	3.8	3.9
	Count	3	3	3	3	3	3
2020	Min.	63.3	0.0	2.3	38.1	2.0	20.0
2020	Max	96.7	0.0	5.8	65.8	3.1	26.0
	Mean	80.1	0.0	4.4	50.4	2.6	22.7
	Count	3	3	3	3	3	3
2021	Min.	29.2	0.0	1.8	17.4	2.6	0.0
2021	Max	56.7	0.5	9.3	37.5	4.6	13.5
	Mean	39.5	0.2	6.7	24.4	3.7	4.5
	Count	3	3	3	3	3	3
2022	Min.	21.5	0.0	1.3	7.3	2.4	0.0
2022	Max	47.1	0.0	11.9	39.6	8.2	0.0
	Mean	33.8	0.0	6.9	21.3	5.6	0.0
	Count	3	3	3	3	3	3
		Total Biomass					
		(ug/L)	Protozoa	Rotifera	Copepoda	Cladoceran	Other
Annual	2016	133.0	0.0	15.0	62.0	14.0	42.0
Mean WL2	2017	127.4	0.0	6.5	47.0	24.7	49.2
	2018	36.6	0.0	5.5	13.4	0.9	16.8
	2019	46.9	0.0	5.1	34.3	3.8	3.9
	2020	80.1	0.0	4.4	50.4	2.6	22.7
	2021	39.5	0.2	6.7	24.4	3.7	4.5
	2022	33.8	0.0	6.9	21.3	5.6	0.0